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Preliminary

 Basic concepts

Figure. the step response of the second-order system

(1)System characteristics in time domain

For Second-order system

where ，the step response is shown on the 
left.
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Preliminary

 Basic concepts
(2) Bode plot and steady-state error

Bode plot draws the characteristics of open-loop amplitude and phase on logarithmic coordinates. The
logarithm stability criterion judges the stability of the closed-loop system according to the relationship
between the open-loop logarithm amplitude frequency and the logarithm phase frequency curve.

Figure. logarithm phase frequency curveFigure：Stability Margin



Preliminary

 Basic concepts
(2) Bode plot and steady-state error

Phase margin   ：when , the difference value between the phase curve and , i.e.,

Where represents the cut-off frequency.

Gain Margin :When =

When the closed-loop system is stable, the larger the phase and gain margin is, the more stable 
the system is. The stability margin also reflects the smoothness of the system, such as the overshoot 
and so on. General requirements:
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Preliminary

 Framework of Low-Level Flight Control of Multicopters

The multicopter is underactuated because the system has six outputs (position             and attitude            ), 
but only four independent inputs (total thrust             and three-axis moment           ). In the design of 
multicopter flight controller, the control strategy of inner and outer loops can be used, in which the inner 
loop controls the attitude angle, while the outer loop controls the position. The inner and outer loop control 
is used to realize the lifting, hovering, side flying and other flight modes of the multicopter.

f R∈ 3R∈τ

3R∈p 3R∈Θ

Figure. Closed-loop structure of a low-level fight control system for 

multicopters



 Position Control

( ) ( )
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 Horizontal position channel
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 Desired horizontal dynamics
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(1) Traditional PID Controller
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When considering the set-point control， , so it becomes              

 Position Control
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 Altitude channel

 Desired altitude dynamics
( ) ( )( )d d dd d pz zz p z z p z zf mg m p k p p k p p= − − − − −  
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(1)  Traditional PID Controller
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lim 0t kϖ→∞ =

df dτ

,dk kσ σ=
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 Position Control
(2) PID Controllers in Open Source Autopilots

1) Horizontal position control
 In order to satisfy   ,according to( )

h
lim 0t t→∞ =pe

h h=p v ( )
hhd hd h= −pv K p p

hd 0=p
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Under the assumption that              , if

Then,

where 。hv h hd−e v v

The velocity will
reach the desired
value as long as the
position.

Desired velocity

Preliminary



lim 0t kϖ→∞ =

df dτ
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 Position Control
(2) PID Controllers in Open Source Autopilots

1) Horizontal position channel
In order to satisfy , according to( )

h
lim 0t t→∞ =ve

h hg ψ= −v A Θ
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The angle will reach
the desired value as
long as the velocity.

Preliminary



 Position Control
(2) PID Controllers in Open Source Autopilots

2) Altitude channel

The vertical velocity will reach the desired value as 
long as the altitude.

Similar to the horizontal position channel,

The altitude channel controller is

( )d dzz p z zv k p p= − −

( )d p i dz z z z z zv v v v v vf m g k e k e k e= + + +∫ 

Preliminary
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 Position Control
(3) PID Controller with Saturation

Traditional PID controller

PID Controllers in Open Source Autopilots

The position error is large The position error 
is large

hd 2πΘ 

The small-angle 
assumption is violated.

It is necessary to add a controller with saturation

Then design of the
Controller make no
Sense.

Experiment Preliminary



The difference between the direction-guaranteed saturation and the traditional saturation
function ： the direction-guaranteed saturation function can not only confine that the absolute value
of each element of the final vector is not greater than a, but also guarantee the direction to be the same as that of x.

 Position Control
(3) PID Controller with Saturation

Experiment Preliminary

The PID controller used in open source autopilot is rewritten as
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where .The direction-guaranteed saturation function               is defined as



The direction-guaranteed saturation function can guarantee that the multicopter flies along a straight line, but the traditional saturation 
function cannot.
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 Position Control
(3) PID Controller with Saturation
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Figure. Comparison of the results of two
Saturation functions

Figure. Comparison of the results of two Saturation functions

Traditional 
saturation 
function

Experiment Preliminary



In order to avoid a throttle command out of range, the saturation needs to be considered as well. Thus,
the traditional PID controller becomes

Where . Similarly, the PID controller design used in the open source autopilots is
rewritten as

Where .For a scale, the direction-guaranteed saturation function is the same as the traditional
saturation function. 。

 Position Control
(3) PID Controller with Saturation
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Experiment Preliminary
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Experiment Preliminary

 The control system compensation

The following mainly introduces the series compensation. The structure of the system with series 

compensation is shown in the figure. Where Gc(s) is the transfer function of the series compensator, and 

G(s) is the transfer function of the invariant part of the system. In engineering practice, the commonly 

used series compensation includes lead compensation, lag compensation and lag lead compensation.

Figure. System with series compensation



Experiment Preliminary

 The control system compensation
(1) Phase-Lead compensation

𝐺𝐺𝑐𝑐(𝑠𝑠) =
1 + 𝑎𝑎𝑎𝑎𝑎𝑎
1 + 𝑇𝑇𝑇𝑇

𝑎𝑎 > 1

Phase-lead compensation occurs in 1
𝑎𝑎𝑎𝑎

,
1
𝑇𝑇

The maximum lead-phase is 𝜑𝜑𝑚𝑚 = arcsin
𝑎𝑎 − 1
𝑎𝑎 + 1

This maximum value occurs at the
geometric center of the logarithmic
frequency characteristic curve, and the
corresponding angular frequency is:

𝜔𝜔𝑚𝑚 =
1
𝑎𝑎𝑇𝑇

Figure. Phase-Lead compensation curve



Experiment Preliminary

 The control system compensation
(2) Phase-lag compensation

𝐺𝐺𝑐𝑐(𝑠𝑠) =
1 + 𝑏𝑏𝑏𝑏𝑏𝑏
1 + 𝑇𝑇𝑇𝑇

𝑏𝑏 < 1

(3) Phase lead-and-lag compensation

𝐺𝐺𝑐𝑐(𝑠𝑠) =
1 + 𝑏𝑏𝑇𝑇1𝑠𝑠)(1 + 𝑎𝑎𝑇𝑇2𝑠𝑠

1 + 𝑇𝑇1𝑠𝑠)(1 + 𝑇𝑇2𝑠𝑠

Where 𝑎𝑎 > 1,b > 1, and 𝑏𝑏𝑇𝑇1 > 𝑎𝑎𝑇𝑇2



Experiment Preliminary

In order to make this chapter self-contained, the experiment 

preliminary is from Chapter. 11 of “Quan Quan.Introduction to 

Multicopter Design and Control. Springer, Singapore, 2017”.



 Experimental Objective

Basic Experiment

 Things to prepare

(1) Hardware: Multicopter System, Pixhawk Autopilot System;
(2) Software: MATLAB R2017b or above, Simulink-based Controller Design and Simulation 

Platform, HIL(Hardware in the loop) Simulation Platform, Instructional Package “e6.1” 
(https://rflysim.com/course).

 Objectives

(1) Repeat the Simulink simulation of a quadcopter to analyze the channel decoupling between
the control along and axes ;

(2) Sweep the open-loop position control system to obtain the Bode plot and further analyze the 
stability margin of the closed-loop position control system;

(3) Perform the HIL simulation.

b bo x b bo y



Basic Experiment

 Experimental procedure
(1) Step1:SIL simulation – Channel decouping

Figure. Simulink model “PositionControl_Sim.slx”

1) Parameter Initialization
Run the file “e6\e6.1\Sim\Init_control.m” to initialize the parameters. Next, the Simulink file

“AttitudeControl_Sim” will open automatically.
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Basic Experiment

 Experimental procedure

Figure. Quadcopter in FlightGear

2) Run the simulation

Open the file “FlightGear-F450” and click

on the Simulink “Run” button to run.

Subsequently, the motion of the quadcopter is

observed in FlightGear, as shown on the right.

The quadcopter in FlightGear climbs up for a

short time, and then flies against the screen,

corresponding to the axis.e eo y



Basic Experiment

 Experimental procedure

Figure； Altitude response

3) Simulation results

The change of the altitude is shown on the 

right. 



Basic Experiment

 Experimental procedure

Figure. Horizontal position response

4) Channel decoupling analysis

The resultant horizontal position of the

quadcopter is shown on the right. It can be observed

that position control along the axis does not

change the position along the axis. This implies

that control actions along the and axes have

been decoupled.

b bo y

b bo x

b bo yb bo x



Basic Experiment

 Experimental procedure
(2) Step2:SIL simulation - Stability

Figure. Specifying signals as input and output

1) Run the file “e6\e6.1\tune\Init_control.m”to

initialize the parameters, and then the Simulink

file “PosControl_tune.slx” is opened

automatically.

Open the model “Control System”-

“position_control” of the Simulink file and

specify the input and output signals for the Bode

plot.



Basic Experiment

 Experimental procedure
2) Select “Analysis”- “Control Design”-

“Linear Analysis” on the top menu bar.
3) From the context menu,select “Linear

Analysis” and click “Bode” to get the Bode
plot.
4) Right click the curve and

select“ Characteristics ” -“ All Stability
Margins” . It is observed that the gain
margin is 15.3dB at a frequency of
3.97rad/s;the phase margin is 65.5，at a
frequency of 1.04rad/s.

Figure. Open-loop Bode plot of x-axis channel control system

Bode Diagram

Frequency  (rad/s)

10
-2

10
-1

10 0 10 1 10 2 10 3 10 4

-720

-540

-360

-180

0

Ph
as

e 
(d

eg
)

-300

-200

-100

0

100

M
ag

ni
tu

de
 (d

B)



Basic Experiment

 Experimental procedure
(3) Step3: HIL simulation

1) Open Simulink file for HIL
Run the file “e6\e6.1\HIL\Init_control.m”

to initialize the parameters，and then the

Simulink file “ PosControl_HIL.slx ” is

opened automatically as shown on the right.

Figure. Simulink model “PosControl_HIL.slx”
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Basic Experiment

 Experimental procedure

2) Connect hardware

Figure. Connection between Pixhawk hardware and RC receiver

It should be noted that the
airframe type “HIL Quadcopter X”
should be selected in HIL
simulation.

RadioLink 
R9DS Receiver

Pixhawk 
Autopilot

JR wire: red for 
battery positive pole

MicroUSB 
Cable 

Connecting to 
PC

Left to Right:
White- red- black

The left RCIN port.
Top to bottom:

Black-red-white



Basic Experiment

 Experimental procedure
3) Compile and upload code

Figure. Code compilation and upload process

Compile the HIL simulation
model and upload the file to the
given Pixhawk autopilot. Later,
the designed attitude control
program can be run on Pixhawk
autopilot.

Click to 
compile

Click to download  Download completed



Basic Experiment

 Experimental procedure
4)  Configure CopterSim
Double-click on the desktop shortcut

CopterSim to open it. Readers can choose
different propulsion systems using the following
procedure. Click on “Model Parameters” to
customize the model parameters and, then click on
“Store and use the parameters” to make them
available. The software will automatically match
the serial port number. Readers would click
the“Run”button to enter the HIL simulation mode.
After that, readers could see the message returned
by the Pixhawk autopilot in the lower-left corner
of the interface.

Figure. User interface of CopterSim



Basic Experiment

 Experimental procedure
5) Open 3DDisplay

Double-click on the desktop shortcut

3DDisply to open it.

6) Simulation performance
Arm the quadcopter for manual control using

the given RC transmitter7. The quadcopter can
hover and fly at a specified speed. When all
control sticks are in the middle position, the
quadcopter will keep hovering.

Figure. User interface of 3DDisplay

3D Scene Viewer

Parameter Viewer

Trajectory Viewer



Analysis Experiment

 Things to prepare

(1) Software: MATLAB R2017b or above, Simulink-based Controller Design and Simulation 

Platform, Instructional Package “e6.2”(https://rflysim.com/course).

 Objectives

(1) Adjust PID controller parameters to improve its control performance and record the overshoot
and the settling time, and then obtain a group of satisfied parameters;

(2) Based on the obtained satisfied parameters, sweep the system to draw the Bode plot and 
analyze its stability margin.

 Experimental Objective



 Experimental Procedure

Analysis Experiment

(1)  Step1:Initial model setup

ModelInit_PosE=[0,0,-100];  

ModelInit_VelB=[0,0,0]; 

ModelInit_AngEuler=[0,0,0];

ModelInit_RateB=[0,0,0];

ModelInit_RPM=557.1420;

The steps to adjust PID parameters are similar to those used
for attitude control. First, adjust the altitude channel and then
adjust the horizontal position channel. Furthermore, for each
channel, first adjust the velocity control loop and then adjust the
position loop. The necessary file can be found in the folder
“e6\e6.2\tune”. Because the PID adjusting methods for the
channel control loops are similar, the PID parameters for velocity
along the oexe axis are adjusted here as an example. First, let the
quadcopter hover at the initial altitude of 100m by setting the
throttle value to 0.6085 and the initial speed of four motors to
557.1420rad/s. Modify the corresponding parameters in the file
“Init_control.m” as shown on the right.



 Experimental Procedure

Analysis Experiment

(2) Step2: Adjust the PID parameters of the velocity control loop

Figure. Setting step response for velocity control loop

ex vxd
px

 

4
x_desired

7
x
10
vx

 

x y

vx 

1
vx_desired Step

Open the model “Control System” -
“position_control” in the file
“e6\e6.2\tune\PosControl_tune.slx”.
Replace “vx_desired” with a step input.
Later, configure the step response and “vx”
to “Enable Data logging” to get the step
response of the velocity control loop, as
shown on the right.



 Experimental Procedure

Analysis Experiment

(2)  Step2: Adjust the PID parameters of the velocity control loop

Figure. Step response of velocity along the         axis channel

with different proportional term parameters

Modify the PID parameters corresponding to the
velocity control loop in the file “Init_control.m” . First,
adjust the proportional term parameter and set the
integral and derivative term parameters to 0. After that,
run the file “Init_control.m” (you must run the file
each time to update any changes if you change them).
Click on the Simulink“Run” button to view responses
in the“Simulation Data Inspector”. The proportional
term parameter gradually increases from a small value
to a large value, i.e., the variable “Kvxp”in the file
“Init_control.m” increases.
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 Experimental Procedure

Analysis Experiment

Later, adjust the integral and
derivative term parameters, i.e.,“Kvxi”
and “Kvxd” in the file “Init_control.m”.
Finally, fine tune the proportional term
parameter and the resulting PID
parameters are

Figure. Step response of velocity along  
axis channel with a group of satisfied PID parameters

Kvxp=2.5;

Kvxi=0.4;

Kvxd=0.01;

(2)  Step2: Adjust the PID parameters of the velocity control loop
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 Experimental Procedure

Analysis Experiment

(3) Step3: Adjust PID parameters for the position control loop

Figure. Setting step response of position control loop 

along the         axis    
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Step

Adjust the proportional term parameter for
the position control loop. Using the obtained
position control loop parameters in Step 2,
replace “x_desired” with a step input, and set
the step input and “x” in the
“PosControl_tune.slx” file to “Enable Data
Logging”.

e eo x



 Experimental Procedure

Analysis Experiment

(3) Step3: Adjust PID parameters for the position control loop

Figure. Step response of position control loop 

along        axis with different proportional term parameters          

Kpxp=1.0;

Kvxp=2.5;

Kvxi=0.4;

Kvxd=0.01;

Increase the proportional term parameter “Kpxp” in the file “Init_control.m” gradually, and observe 
the step response in“Simulation Data Inspector”. The final selected parameters are
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 Experimental Procedure

Analysis Experiment

(4) Step4: Sweep to get the Bode plot

Figure. Bode plot of the open-loop position

Control loop along the        axis

Specify input and output signals for the Bode
plot. Specify “x_desired” as “Open-loop Input”,
and then specify “x” as “Open-loop Output”.
Using these parameters, the Bode plot can be
drawn, as shown on the right.

e eo x

Bode Diagram
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 Remark

Analysis Experiment

(1) A time-invariant system is the premise of the analysis in the frequency domain.
Hence, it is important to set the quadcopter at an equilibrium, such as hovering.

(2) Find out the input and output of the system, and then specify the input and output
signals correctly. Select the output signal line as “Open-loop output” when testing
the open-loop system, and “Output Measurement” when testing the closed-loop
system. For details, please refer to the document
https://ww2.mathworks.cn/help/slcontrol/ug/specify-portion-of-model-to-
linearize-in-simulink-model.html.



 Experimental Objective

Design Experiment

 Things to prepare

(1) Hardware: Multicopter System, Pixhawk Autopilot System;
(2) Software: MATLAB R2017b or above, Simulink-based Controller Design and Simulation 

Platform, HIL(Hardware in the loop) Simulation Platform, Instructional Package “e6.3” 
(https://rflysim.com/course).

 Objectives

(1) Obtain the transfer function for the position control channel, and design a compensator for the existing
controller using MATLAB “ControlSystemDesigner” in the velocity control loop to satisfy the conditions
of step response steady-state error ， phase margin > , and cut-off frequency > 2.0 rad/s.
The position control loop satisfies that the cut-off frequency is >1 rad/s and phase margin is > ;

(2) Perform SIL simulation and HIL simulation experiment with the designed controller;
(3) Use the designed controller to perform outdoor flight test experiment.

𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 0.01 75°

60°



(1)  Step1: Simplify the overall structure

Design Experiment

 Experimental Design

Consider the x-axis channel for example. The simplified model is shown below.

Figure. Simulink model ”PosControl_tune.slx”
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Design Experiment

(2) Step2: Velocity control loop analysis
The input is the desired velocity and the output is the velocity. Specify signals as input and output.

Figure. Specify signals as input and output 
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Design Experiment

(3)  Step3: Obtain the transfer 

function of the x-axis channel
After the Bode plot is obtained, a variable, namely

“linsys1”, will appear in the “Linear Analysis
Workspace”. The transfer function can be obtained
by the operation shown on the right.

4 3 2

8 7 6 5 4 3 2

3331 5.039 05 2.563 07 4.486 08 5.371 08
200 1.567 04 6.045 05 1.189 07 1.154 08 5.557 08 5.371 08 280.1

s e s e s e s e
s s e s e s e s e s e s e s

+ + + +
+ + + + + + + +

Figure. Transfer function

2

3330.9( 1.29
( 5.214 07)( 1.253)( 33.92)( 14.87 101. )

)
1

s
s e s s s s

+
+ − + + + +

Simplify

 Experimental Design



Design Experiment

(4) Step4: Use toolbox to design 
the compensator

Figure. Control system design based on Bode plot

1
2
3
4
5

num=[3331 5.039e05 2.563e07 4.486e08 5.371e08];
den=[1 200 1.567e04 6.045e05 1.189e07  ...
1.154e08 5.557e08 5.371e08 280.1];
G=tf(num,den);
controlSystemDesigner('bode',G);

Based on the transfer function, establish

a “.m” file, then the “Control System

Design” can be used to design the

compensator.



Design Experiment

It can be observed that the step response is slow.
Drag the curve in the Bode plot up to increase the
open-loop gain so that the step response becomes
fast.

(4) Step4: Use toolbox to design 
the compensator



Design Experiment

Later, as shown on the right, the response time
reduces but an overshoot appears, and the phase
margin is 50.1. These do not meet the
requirement.

(4) Step4: Use toolbox to design 
the compensator



Design Experiment

Consider adding a lead compensator to
increase the phase margin, and further
increase the cut-off frequency and response
speed. The procedure is as follows. In the
Bode plot, right click and select “add
Pole/Zero” - “Lead”.

零点

极点

Figure. Step response after adding a lead compensator

(4) Step4: Use toolbox to design 
the compensator



Design Experiment

After this step, directly drag the zero and
pole and observe their response to obtain an
appropriate compensator.

2.5(1 0.15 )
1 0.013c

sG
s

+
=

+

Figure. Compensator obtained using toolbox

(4) Step4: Use toolbox to design 
the compensator



Design Experiment
(5)  Step5: Design a compensator for the 
position control loop of the x-axis channel

Put the velocity control loop compensator designed in Step 5 into the model in Step 1, The obtained 
Bode plot is shown below.

It can be observed that the phase margin is ,
andthe cut-off frequency is 0.95 rad/s. These meet the
requirements marginally. Gain should be increased
slightly to increase the cut-off frequency to 1 rad/s .
For example, choose the position loop gain to be 1.2
and redraw the Bode diagram. As a result, the phase
margin is and the cutoff frequency is 1.12.
Therefore, the experimental requirement is satisfied.

Figure. Bode plot of the position control loop
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(1)  Step1: Discretize the continuous-time compensator

Design Experiment

 Simulation procedure

The designed compensator is an s transfer function, which has to be discretized so that it can be run on
the Pixhawk autopilot, a digital computer. The “c2d” function in MATLAB is used as:

H = tf([num], [den])
Hd = c2d(H, Ts, 'foh')

Here, “num” is the transfer function numerator coefficient vector, “den” is the transfer function
denominator coefficient vector, and “ Ts” is the sample time, “Ts= 0.01s”.The s transfer function is
converted into a z transfer function as follows

2.5(1 0.15 ) 28.85 z - 27.5 ( )
1 0.013 z - 0.4634c c

sG G z
s

+
= → =

+



Design Experiment

 Simulation procedure
(2)  Step2: Replace the control model

Figure. Controller discretized for HIL simulation



Design Experiment

 Simulation procedure
(3)  Step3: HIL simulation

The quadcopter can fly

along a straight line and

hover.

Figure. HIL simulation shown in 3DDisplay



Design Experiment

 Flight Test Procedure
(1)  Step1: Quadcopter configuration

The multicopter used in the outdoor flight tests is an F450 quadcopter For outdoor flight tests, the
airframe of Pixhawk should be changed from “HIL Quadcopter X” to “DJI Flame Wheel F450” in QGC
and all sensors should also be calibrated in QGC.

Figure. F450 airframe schematic

F450 airframe



Design Experiment

 Flight Test Procedure

Compared with the model in the HIL
simulation, the flight test model is changed
the PWM output. A new data recording
module is added to the model, A
“invalid.msg.specified” warning block
appears automatically when the Simulink
model is opened. The detailed procedures
of adding logger data can be found in
Experiment 5.

Figure. Model for flight test, Simulink model ” PosControl_FLY.slx”
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(2)  Step2: Simulink model for flight test



Design Experiment

 Flight Test Procedure

(4) Step4: Outdoor flight test
To ensure safety, a rope is

tethered to the quadcopter, and the
other end is tethered to a heavy
object. The remote pilot maintains
a safe distance from the quadcopter
during flight.

Figure. Outdoor flight test

(3) Step3: Upload code
This process is similar to that

used for compiling and uploading

the code in HIL simulation.
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Design Experiment

 Flight Test Procedure
(5) Step5. Analyze the data In the left-hand plot,

the quadcopter reaches
the specified position
from 0. The designed
set-point controller
functions well.
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Figure. Position and velocity along the        axise eo y

The right-hand plot
represents the velocity
control response and it
can be observed that the
quadcopter flies at the
specified speed with a
fast velocity response



(1) Based on the position control model of a quadcopter, a widely-used PID control method is developed,
and the design of the position controller is completed in Simulink and MATLAB. The simulation
performance is displayed in FlightGear.

(2) The PSP tool of Simulink is used to generate the embedded code which is then uploaded to the
Pixhawk autopilot for HIL simulation and flight test.

(3) The parameters of the PID controller are adjusted to get the satisfied parameters. The system analysis
tool in MATLAB/Simulink is adopted to obtain Bode plots corresponding to the open-loop position
control system and velocity control system to observe the phase margin and gain margin of the
corresponding closed-loop systems.

(4) In order to satisfy the given requirements, the system compensation method is adopted. Unlike in the
attitude control design experiment, this chapter directly relies on the MATLAB toolbox to facilitate the
compensator design. Lead and lag-lead compensators are designed for the position control loop and
velocity control loop respectively, which met the given requirements. Furthermore, the design is
verified through HILsimulation and flight test.

Summary

If you have any question, please go to https://rflysim.com for your information.

https://rflysim.com/
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All course PPTs, videos, and source code will be released on our website
https://rflysim.com/en

For more detailed content, please refer to the textbook:
Quan Quan, Xunhua Dai, Shuai Wang. Multicopter Design and Control Practice. Springer, 2020

https://www.springer.com/us/book/9789811531378

If you encounter any problems, please post question at Github page
https://github.com/RflySim/RflyExpCode/issues

If you are interested in RflySim advanced platform and courses for rapid development 
and testing of UAV Swarm/Vision/AI algorithms, please visit:

https://rflysim.com/en/4_Pro/Advanced.html

Resource

https://rflysim.com/en/
https://www.springer.com/us/book/9789811531378
https://github.com/RflySim/RflyExpCode/issues
https://rflysim.com/en/4_Pro/Advanced.html


Thanks
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