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Measurement Principle
The three-axis accelerometer is fixed to the multicopter, aligned with the aircraft-body

coordinate frame. Therefore, the observation of low-frequency pitch and roll angle

acquired by accelerometer measurement illustrated as
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where denotes the measurement from the accelerometer.
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Several further considerations are as follows
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(1) It is better to eliminate the slow time-varying drift of the accelerometer to obtain a more accurate
angle.
(2) If the amplitude of the vibration is large, are polluted by noise severely and further affect
the estimation of . Thus, the vibration damping is very important. Additionally, the attitude rates

and angular velocity exhibit the following relationship

b bm m,x ya a
m m,θ φ

, ,θ φ ψ 



bω

According to the working principle, the attitude is estimated by the accelerometers and magnetometers 

with large noise but small drifts.

Multicopters typically work under
condition that are small, and thus
the above equation is approximated as
follows.
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 Linear Complementary Filter
Take pitch angle as an example to deduce the linear complementary filtering in detail. The Laplace 
transform of pitch angle      is expressed as follows         θ

τ +∈

denotes the true value of the pitch angle.θ

A low-pass filter，
denotes a time constant

A high-pass filter
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1) Given that the pitch angle obtained by an
accelerometer has high noise but a low drift; for
simplicity, it is modeled as follows

2) Given that the pitch angle estimated by integrating 
angular velocity exhibits a little noise but a large drift, 
and the integration is modeled as follows

m nθθ θ= +

where      denotes high-frequency noise, and     denotes 
the true pitch angle.

nθ θ The Laplace transform
of the integration of
angular velocity

The Laplace transform of 
the constant drift
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The true value of 
the pitch angle
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The pitch angle, the standard form of a linear complementary filter is expressed as follows

The integration of angular
velocity by gyroscope

The true value of the pitch
angle by accelerometer
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The pitch angle, the standard form of a linear complementary filter is expressed as follows

The true value of the pitch
angle by accelerometer

The integration of angular
velocity by gyroscope
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denotes the sampling 
period

Figure. Structure of complementary filter

During the process, the low-frequency filter exhibits the
advantage that has a small drift; while the high-pass
filter maintains the advantage that has a little
noise.

mθ

In order to realize the filter with digital
computers, the filter should be transformed
into a discrete-time differential form

Through the first-order backward difference,    is expressed as
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The above equation is further transformed into a
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 Linear Complementary Filter
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 Kalman Filter
The“truth”model for discrete-time cases is given as follows
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Where         and are assumed as zero-mean Gaussian whitenoise processes. This means that 
the errors are uncorrelated forward or backward in time such that  
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 Kalman Filter
The“truth”model for discrete-time cases is given as follows

, 1 1 1 , 1 1k k k k k k k k

k k k k

− − − − −= + +

= +

x Φ x u Γ w
z H x v

Preliminary

Suppose that the initial condition of
state satisfies following expression0x
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 Summary of the Kalman filter
1. Step1: Process model 2. Step2: Initial state
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6. Step6: Error covariance propagation

7. Step7: Kalman gain matrix

8. Step8: State estimate update

9. Step9: Error covariance update
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(1) It is observed that the error covariance matrix can be obtained using the filter, which represents the
estimation accuracy. Additionally, it can be used to evaluate the health of sensors.
(2) Generally speaking, if a reasonable sampling time is adopted and the continuous-time system is observable,
then the corresponding discrete-time system is also observable. Conversely, the system can also lose
controllability and observability when an improper sampling time is adopted. Thus, it is necessary to check the
observability of the discrete system after sampling.
(3) The matrix needs to be non-singular. Otherwise, the solution expressed by
does not make sense.
(4) If the system is unobservable, the filter also works without causing numerical problems. Only, the
unobservable mode will not be corrected. In an extreme case, the whole system is completely unobservable if

. Subsequently, the filter gain . Thus, the Kalman filter degenerates as follows
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 Extended Kalman Filter 

Preliminary

The main idea of EKF denotes the linearization of nonlinear

functions, which ignores the higher order terms. The nonlinear

problem is transformed into a linear problem through Taylor

expansion and first order linear truncation. the EKF is a suboptimal

filter since the processing of linearization will cause an additional

error.



 Extended Kalman Filter
The following general nonlinear system is first considered that is described as follows

Where the random vector captures uncertainties in the system model and denotes the measurement
noise, both of which are temporally uncorrelated (white noise), zero-mean random sequences with
covariance matrices and , respectively.
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In the derivation of the
EKF,
and are
expanded via Taylor
expansion.
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 Extended Kalman Filter
In order to simplify the expression of the EKF, the following notation is defined
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 Summary of the Extended  Kalman filter
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1. Step1: Process model
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 Summary of the Extended  Kalman filter 
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6. Step6: Error covariance propagation

7. Step7: Kalman gain matrix

8. Step8: State estimate update

9. Step9: Error covariance update
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5. Step5: State estimate propagation
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Preliminary

In order to make this chapter self-contained, the preliminary is

from Chapter. 9 of “Quan Quan. Introduction to Multicopter

Design and Control. Springer, Singapore, 2017”.



 Experimental Objective
Basic Experiment

 Things to prepare
(1) Hardware: Pixhawk autopilot system;

(2) Software: MATLAB R2017b or above, Pixhawk Support Package(PSP) Toolbox, Instructional
Package “e4.1”(https://rflysim.com/course);

(3) Data for experiment are prepared in Instructional Package “e4.1” for readers without hardware
to collect data.

 Objectives
Repeat the given steps to log accelerometer and gyroscope data via the given Pixhawk autopilot

system. Subsequently, run the offered code to compare the estimated attitude of complementary filter
with that of raw data and the self-contained filter in PX4 software of the Pixhawk autopilot(the
estimate by the PX4 software is taken as ground truth).

https://rflysim.com/course


Plug in the right
 side USB port

Plug in the left 
RCIN port

Black-red-white

Left-down 
S.Bus port

Black-red-
white

Basic Experiment

 Experimental Procedure

1) Hardware and software connection.The
connection between the Radio Controller (RC)
receiver and the Pixhawk autopilot is shown in the
right figure.

Figure. Pixhawk and RC transmitter connection diagram

(1) Step1：Log data from accelerometers and 

gyroscopes



Basic Experiment

Figure. Data logging, Simulink model “log_data.slx”

2) Open file “log_data.slx” as shown in the

right figure. which can obtain data including

acceleration, angular velocity, time stamp, and

attitude in the Pixhawk autopilot. The data

logged is saved in the Pixhawk SD card via

placing the upper-left stick (CH5) at a

corresponding position.

 Experimental  Procedure
(1) Step1：Log data from accelerometers and gyroscopes

a



Click to compile

Click to download  Download completed

Basic Experiment

3) Compile the file “log_data.slx” and upload it to the Pixhawk autopilot

(1) Step1：Log data from accelerometers and gyroscopes

Figure. Process of compiling and uploading



Basic Experiment

4) Log data. The Pixhawk LED status light lighting red denotes that PX4 software does not work.
Thus, after connecting the RC receiver to the Pixhawk autopilot, wait for a while until Pixhawk LED
status light gets green (if Pixhawk LED status light does not get green, the Pixhawk is required to be
re-plugged). Pull back the upper-left switch corresponding to CH5>1500 to start writing data to the
SD card. Subsequently, manually shake the Pixhawk autopilot. After data logging finished, pull
forward the upper-left switch (CH5<1500) to stop writing data to the SD card.
5) Read data. First, take the SD card out from the Pixhawk autopilot. Read the data by a card

reader. Copy the file “e4_A.bin” to folder “e4\e4.1”. Use the function

[datapoints, numpoints] = px4_read_binary_file('mw_A.bin')

to decode the data. The data are saved in "datapoints" and the number of data is saved in "numpoints".

(1) Step1：Log data from accelerometers and gyroscopes



Basic Experiment

 Experimental  Procedure

1) The procedure of a complementary filter in
MATLAB is in file “Attitude_cf.m”, as shown in the
following table. “theta_am” and phi_am” denotes
the pitch and roll angles calculated by the raw data
from the accelerometer, respectively. theta_cf” and
“phi_cf” denotes the pitch and roll angles filtered by
the complementary filter, respectively.

(2) Step2：Design a complementary filter
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

22

23

% phi_cf_k, theta_cf_k: Angle value of the previous moment, unit: rad
% tao: Filter parameter
%Output:
%  phi_cf, theta_cf:  Attitude angle, unit: rad

gx = z(1); gy = z(2);
ax = z(4); ay = z(5); az = z(6);

%Calculate the attitude angle using accelerometer measurement
g = sqrt(ax*ax + ay*ay + az*az);
theta_am = asin(ax/g);
phi_am = -asin(ay/(g*cos(theta_am)));

%Complementary filtering
theta_cf = tao/(tao + dt)*(theta_cf_k + gy*dt) + dt/(tao + 

dt)*theta_am;
phi_cf = tao/(tao + dt)*(phi_cf_k + gx*dt) + dt/(tao + dt)*phi_am;  

end 

1

2
3
4
5
6

function [ phi_cf, theta_cf ] = Attitude_cf(dt, z, phi_cf_k, theta_cf_k, 
tao)  
%Function description:
%  Complementary filter for attitude estimation.
%Input:
%  dt: sampling period, unit: s
%  z: three-axis angle gyroscope and three-axis accelerometer 
measurements, [gx, gy, gz, ax, ay, az]’, unit: rad/s, m/s2



Basic Experiment

1) Two sets of sensor data are given, where the file “e4_A.bin” stores the data directly from the Pixhawk

autopilot rotating by hands, and the file “logdata.mat” stores the data from a practical flight of a

quadcopter.

2) Run the file “Attitude_estimator0.m” with the results, where “gyro” corresponds to angle velocity

from the gyroscope, “acc” corresponds to the raw data from the accelerometer, “cf” corresponds to the

complementary filter and “px4” corresponds to the data from the self-contained filter in PX4 software of

the Pixhawk autopilot.

 Experimental  Procedure
(3) Step3：Analyze filtering results
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Basic Experiment

 Experimental  Procedure
(3)  Step3：Analyze filtering results

Figure. Estimate comparison of gyro,acc,cf and px4

Several observations are obtained
as follows:
1) cumulative errors of the pure
integral of the angle velocity from
the gyroscope are large and diverge;
2) based on the raw data from the
accelerometer, the estimate does
not diverge although the noise is
larger with obvious peaks and,
especially using the data from a
practical flight;
3) by using the complementary
filter, the estimate is smooth and
exhibits less cumulative error.



Analysis Experiment

Based on the basic experiment, change the value of the parameter τ in the
complementary filter

to obseve the filtered result, and analyze the function of the parameter τ in the
complementary filter.

 Experimental Objective
Things to prepare

Data logged in the basic experiment and Instructional  Package “e4.2” 
( https://rflysim.com/course )；

 Objectives

ˆ ˆ( ) ( ( 1) ( )) ( )
b

s
s y m m

s s

Tk k T k k
T T

τθ θ ω θ
τ τ

= − + +
+ +



 Experimental Procedure
Write a program, where the parameter τ in equation 

Analysis Experiment

corresponding to “tao” is modified. Subsequently,
compare the estimate with respect to different values of
the parameter τ. Obtain the estimate by the file
“Attitude_cf_tao.m” with τ corresponding to 0.01, 0.1,
and 1, respectively.

ˆ ˆ( ) ( ( 1) ( )) ( )
b

s
s y m m

s s

Tk k T k k
T T

τθ θ ω θ
τ τ

= − + +
+ +

11
12

13
14
15
16
17
18
19
20
21
22
23

24

25
26
27

end
theta_cf = zeros(1, n);  %Roll obtained from complementary 
filtering
phi_cf = zeros(1, n);  %Pitch obtained from complementary filtering
tao = 0.001; 

for i = 1 : 3
tao = tao*10;
for k = 2 : n

g = sqrt(ax(k)*ax(k) + ay(k)*ay(k) + az(k)*az(k));
theta_am = asin(ax(k)/g);
phi_am = -asin(ay(k)/(g*cos(theta_am)));

theta_cf(i, k) = tao/(tao + Ts(k))*(theta_cf(i, k - 1) + gy(k)*Ts(k)) 
+ Ts(k)/(tao + Ts(k))*theta_am;

phi_cf(i,k) = tao/(tao + Ts(k))*(phi_cf(i, k- 1) + gx(k)*Ts(k)) + 
Ts(k)/(tao + Ts(k))*phi_am;

end 
end

1
2
3
4
5
6
7
8
9
10

%The influence of the parameter tao on the filtering performance
clear; 
load logdata
n = length(ax);  %Number of data collected
Ts = zeros(1,n);  %Sampling time

Ts(1) = 0.004;

for k =1:n-1 
Ts(k+1) = (timestamp(k + 1) - timestamp(k))*0.000001;
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Analysis Experiment

Figure. Pitch estimate with respect to parameter τ

The larger the parameter τ is, the more high-
frequency noise is filtered. In particular, when ,
namely

1 0s

s s

T
T T

τ
τ τ

≈ ≈
+ +

，

( ) ( )
( ) ( )

b

b

m

m

ˆ ˆ( ) 1
ˆ ˆ( ) 1

s y

s x

k k T k

k k T k

θ θ ω

φ φ ω

 ≈ − +


≈ − +

Complementary filter is

This implies that the gyroscope no longer
contributes to the estimate and only the calculation
of the angle velocity from the accelerometer is used.

sTτ 
 Experimental Procedure
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 Experimental Objective
 Things to prepare
(1) Hardware: Pixhawk autopilot system;

(2) Software: MATLAB R2017b or above, Pixhawk Support Package(PSP) toolbox, gyroscope

and accelerometer data logged in basic experiment and Instructional Package

“e4.3’’( https://rflysim.com/course);

(3) Data for experiment are prepared in the instructional package “e4.3” for readers without

hardware to collect data.

https://rflysim.com/course
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 Experimental Objective
 Objectives

With the obtained data, design a Kalman filter to estimate the pitch and roll
angles, and compare the estimated attitude of Kalman filter with that of raw data
and the self-contained filter in PX4 software of the Pixhawk autopilot (the
estimate by the PX4 software is taken as ground truth).



(1) Step1：Kalman filter for attitude estimation

sin
sin cos
cos cos

θ
φ θ
φ θ

− 
 =  
  

x

e e b b b b
b b e e× ×
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The third column

The reading of a three-axis accelerometer

Process model

Measurement model

b

×
 = −  x ω x

Design Experiment

 Experimental Design

b
m ag= − +a x n

where is noise.3
a ∈n 

Further considering the drift model

of gyroscope, the process model of the

Kalman filter is established as follows

g

b
m g g

g

×
  = − − −  


= b

x ω b w x

b w




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In order to run Kalman filtering on a computer, a discretization form should be used. So, first
of all, the above equations are transformed into the discrete-time difference form through a first-
order backward difference that

 Process model

g gg,k-1g,k-1 b ,k-1 b ,k-1g,k
b b

m,k g,k-1 g,k 1 k-1 g,k 1 k-1k m,k g,k-1 k-1

          

( [ ] ) [ ] )( [ ] )

T T

T TT− × − ××

+      
= = +      − − − − −          

bb w wb
I ω b w x w xx I ω b x

 Measurement model
[ ] g,kb

m,k a,k
k

  -
 

g
 

= + 
 

b
a 0 I n

x

(2) Step2：Design Kalman filter
 Experimental Design
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Using Taylor expansion for the process model, you can further obtain the information required by the
Kalman filter.

bk-1
k-1 m,k , 1[ ] T ( [ ] T)g k× − ×

 
=  − − − 

I 0
Φ

x I ω b

1
k-1

*
0 [ ] Tk

T
−

×

 
=  − 

I 0
Γ

x

[ ]k   -g=H 0 I

The transition matrix is

The system noise matrix is

The measurement matrix is

(2) Step2：Design Kalman filter
 Experimental Design
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1) State estimate propagation

g, 1g,
b

3 m, g, 1 s 1( [ ] )
kk

k k kk T
bb

I b xx ω
−

− × −

  
=   

   − −

(3) Step3：Kalman filtering step

Calculate state transition matrix and system noise matrix

3 3 3
b1

1 s 3 m, g, 1 s [  ] ( [ ] )k
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 
= 
 − 


where           denotes the current measurement value of the gyroscope, and         denotes 
the former state estimate.

m,
b

kω 1kx −

 Experimental Design
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(3)  Step3：Kalman filtering step

2) Error covariance propagation
T T

| 1 1 1| 1 1 1 1 1k k k k k k k k kP Φ P Φ Γ Q Γ− − − − − − − −= +

where denotes the variance of system noise.1kQ −

3) Kalman gain matrix
T T 1

| 1 | 1( )k k k k k k k k kK P H H P H R −
− −= +

where denotes the variance of measurement noise.1kR −

 Experimental Design
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4) State estimate update

g, g, 1 g, 1

1 1

k k k
k k k

k k k

b b b
K z H

x x x
− −

− −

      
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      
where       denotes the accelerometer measurement. kz

5) Error covariance update

| | 1( )k k k k k kP I K H P −= −

(3)  Step3：Kalman filtering step

 Experimental Design
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2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

function [ x_aposteriori, P_aposteriori, roll, pitch] =
Attitude_ekf( dt, z, q, r, x_aposteriori_k, P_aposteriori_k)  
%unction description:
%  Extended Kalman Filtering Method for State Estimation
%nput:
%  dt: Sampling period
%  z: Measured value
%  q:System noise,r:Measuring noise
%  x_aposteriori_k: State estimate at the last moment
%  P_aposteriori_k: Estimate covariance at the last moment
%Output:
%  x_aposteriori：State estimate of current time
%  P_aposteriori：Estimated covariance at the current moment
%  roll,pitch：Euler angle, unit: rad

w_m = z(1:3);  %Angular velocity measurement
a_m = z(4:6);  %Acceleration measurement

17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38

g = norm(a_m,2);   %Gravitational acceleration
%   w_x_=[ 0,-(wz-bzg, wy-byg;  
%         wz-bzg, 0 ,-(wx-bxg);  
%         -(wy-byg), wx-bxg, 0];  
w_x_ = [0, -(w_m(3) - x_aposteriori_k(3)), w_m(2) -x_aposteriori_k(2);

w_m(3) - x_aposteriori_k(3), 0, -(w_m(1) - x_aposteriori_k(1));
-(w_m(2) - x_aposteriori_k(2)), w_m(1) - x_aposteriori_k(1), 0];  

bCn = eye(3, 3) - w_x_*dt; 
% Predict
% The state estimate propagation
x_apriori = zeros(1, 6);    
x_apriori(1: 3) = x_aposteriori_k(1 : 3);  %The drift model of 
gyroscope
x_apriori(4 : 6) = bCn*x_aposteriori_k(4 : 6);   %Acceleration 
normalized value
%[x]x    
x_aposteriori_k_x = [0, -x_aposteriori_k(6), x_aposteriori_k(5);

x_aposteriori_k(6), 0, -x_aposteriori_k(4);
-x_aposteriori_k(5), x_aposteriori_k(4), 0]; 

% Update state transition matrix
PHI = [eye(3, 3), zeros(3, 3);

-x_aposteriori_k_x*dt, bCn];  

The procedure of Kalman filter is in file
“Attitude_ekf.m”, as shown in the following table.

 Experimental Design
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39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

GAMMA = [eye(3, 3)*dt, zeros(3, 3); % System noise matrix
zeros(3, 3), -x_aposteriori_k_x*dt];

Q = [eye(3, 3)*q(1), zeros(3, 3);
zeros(3, 3), eye(3, 3)*q(2)]; 

%  Error covariance propagation matrix
P_apriori = PHI*P_aposteriori_k*PHI' + GAMMA*Q*GAMMA'; 
% Update
R = eye(3, 3)*r(1);  
H_k = [zeros(3, 3), -g*eye(3, 3)];  
%Kalman gain
K_k = (P_apriori*H_k')/(H_k*P_apriori*H_k' + R);   
% State estimation matrix
x_aposteriori = x_apriori' + K_k*(a_m - H_k*x_apriori');  
% Estimation error covariance
P_aposteriori = (eye(6, 6) - K_k*H_k)*P_apriori;   
% Calculate roll, pitch
k = x_aposteriori(4 : 6) /norm(x_aposteriori(4 : 6), 2);     

roll = atan2(k(2), k(3)); 
pitch = -asin(k(1)); 
end 



245 250 255 260 265 270 275 280

-20

-10

0

10

20

30

40

50

 

245 250 255 260 265 270 275 280

-100

-50

0

50

100

am

ro
ll 

an
gl

e 
(d

eg
)

pi
tc

h 
an

gl
e 

(d
eg

)
 

      

gm
ekf

 

Design Experiment

(1) Step1：Algorithm simulation and verification
 Simulation Procedure

An observation is that
the estimate by the
Kalman filter algorithm
is better than that by the
complementary filtering
when the data is from
an actual flight.

Run the file “Attitude_estimator.m” in file folder “e4.3” to obtain the estimate shown 
in the following figure.

Figure. Roll and pitch estimation comparison
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

clear; 
load logdata n = length(ax);  %Number of data collected
Ts = zeros(1,n);  %Sampling time

Ts(1)  =0.004;

for k = 1 : n-1 
Ts(k+1) = (timestamp(k + 1) - timestamp(k))*0.000001; 

end

theta_am = zeros(1, n);  %Roll calculated from acceleration
phi_am = zeros(1, n);  %Pitch calculated from acceleration
theta_gm = zeros(1, n);  %Roll from the gyroscope
phi_gm = zeros(1, n);  %Pitch from the gyroscope
theta_cf = zeros(1, n);  %Roll obtained from complementary filtering
phi_cf = zeros(1, n);  %Pitch obtained from complementary filtering
phi_ekf = zeros(1, n); 
theta_ekf = zeros(1, n);

tao = 0.3; 
w = [0.08, 0.01];  %System noise
v = 50;  %Measurement noise

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38

39
40
41
42

P_aposteriori = zeros(6, 6, n); 
P_aposteriori(:, :, 1)=eye(6, 6)*100;  %P0 
x_aposteriori = zeros(6, n); 
x_aposteriori(:, 1) = [0, 0, 0, 0, 0, -1];  %X0

for k = 2 : n   
%Calculate Euler angles using accelerometer data
g = sqrt(ax(k)*ax(k) + ay(k)*ay(k) + az(k)*az(k)); 
theta_am(k) = asin(ax(k)/g);  
phi_am(k) = -asin(ay(k)/(g*cos(theta_am(k)))); 
%Calculate Euler angles using gyroscope data
theta_gm(k) = theta_gm(k - 1) + gy(k)*Ts(k); 
phi_gm(k) = phi_gm(k - 1) + gx(k)*Ts(k);

%Complementary filtering and EKF
z = [gx(k), gy(k), gz(k), ax(k), ay(k), az(k)]; 

[ phi_cf(k), theta_cf(k) ] = Attitude_cf(Ts(k), z', phi_cf(k - 1), 
theta_cf(k - 1), tao);
[x_aposteriori(1 : 6, k), P_aposteriori(1 : 6, 1 : 6, k), phi_ekf(k), 

theta_ekf(k)] = Attitude_ekf(Ts(k), z', w, v, x_aposteriori(1 : 6, k - 1), 
P_aposteriori(1 : 6, 1 : 6, k - 1)); 
end
t = timestamp*0.000001; 
rad2deg = 180/pi;

The main code in file “Attitude_estimator.m” is as follows



Kalman filter 

Complementary filter

PX4

Design Experiment

Based on the linear complementary filter and

Kalman filter designed above, design a Simulink

model termed as “ekf_cf.slx” as shown in the

right figure, which includes the two filters and

can save the data to the SD card of the Pixhawk

autopilot.

 Simulation Procedure

Figure. Kalman filter and complementary filter 
comparison, Simulink model “ekf_cf.slx”

(2) Step2：Design the model for the HIL  

simulation
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 Simulation Procedure
(3) Step3：Hardware connection

The connection between the RC

receiver and the Pixhawk autopilot is

shown in the right figure.

Plug in the right
 side USB port

Plug in the left 
RCIN port

Black-red-white

Left-down 
S.Bus port

Black-red-
white

Figure. Pixhawk and RC transmitter connection diagram
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 Simulation Procedure
(4) Step4：Compile and upload the codes

Compile the file “ekf_cf.slx” and upload it to the Pixhawk autopilot.

(5) Step5：Data logging
The Pixhawk LED status light being in red denotes that PX4 software does not work.

Hence, after connecting the RC receiver and the Pixhawk autopilot, wait for a while until
Pixhawk LED status light gets green (if Pixhawk LED status light does not get green, the
Pixhawk requires to be re-plugged). Pull back the upper-left switch corresponding to
Ch5>1500 to start writing data to the SD card. Subsequently, manually rotate the Pixhawk
autopilot. After data logging finished, pull forward the upper-left switch (CH5<1500) to stop
writing data to the SD card.
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 Simulation Procedure
(6) Step6：Read data

Take out the SD card, read the data by a card 
reader, copy the file “ekf1_A.bin” to folder 
“e4\e4.3”.
(7) Step7：Draw data curves

Run the file “plot_filter.m” to get the
curves, as shown in the right figure.

The observation is made that, during the first half time when the
Pixhawk autopilot is rotated slowly, the estimate results by the
complementary filter, Kalman filter and the self-contained filter in PX4
software of the Pixhawk autopilot are similar. During the second half time,
the Pixhawk autopilot is rotated quickly. The estimate by the complementary
filter is evidently bad although, the estimates by the designed Kalman filter
and PX4 software in the Pixhawk autopilot are similar.

Figure. Comparison among complementary 
filter(cf), Kalman filter(ekf) and filter in PX4(px4)



(1) In order to obtain an accurate attitude angle, a complementary filter is designed to fuse the
data from the gyroscope and accelerometer. This filter is equivalent to a high-pass filter for the
gyroscope and a low-pass filter for the accelerometer, which effectively eliminates the
measurement noise and improve accuracy.

(2) The contribution of the gyroscope and accelerometer in the complementary filter is controlled
by parameter τ. Hence, the value of the parameter τ affects the complementary filter
performance. When the parameter τ is high, the gyroscope plays a major role. In contrast, the
accelerometer contributes more when the parameter τ is small.

(3) Design a Kalman filter including the process model and the measurement model. The
experimental results indicate that the Kalman filter is better than the complementary filter and
is similar to the self-contained filter in PX4 software of the Pixhawk autopilot.

Summary
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All course PPTs, videos, and source code will be released on our website
https://rflysim.com/en

For more detailed content, please refer to the textbook:
Quan Quan, Xunhua Dai, Shuai Wang. Multicopter Design and Control Practice. Springer, 2020

https://www.springer.com/us/book/9789811531378

If you encounter any problems, please post question at Github page
https://github.com/RflySim/RflyExpCode/issues

If you are interested in RflySim advanced platform and courses for rapid development 
and testing of UAV Swarm/Vision/AI algorithms, please visit:

https://rflysim.com/en/4_Pro/Advanced.html

Resource

https://rflysim.com/en/
https://www.springer.com/us/book/9789811531378
https://github.com/RflySim/RflyExpCode/issues
https://rflysim.com/en/4_Pro/Advanced.html
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