
Multicopter Design and Control
Practice Experiments

RflySim Advanced Courses
Lesson 06: Vison-Based Control

Dr. Xunhua Dai, Associate Professor,
School of Computer Science and Engineering,

Central South University, China;
Email: dai.xh@csu.edu.cn ;

https://faculty.csu.edu.cn/daixunhua

mailto:dai.xh@csu.edu.cn
https://faculty.csu.edu.cn/daixunhua

1. Setup Instructions

2. Use of basic interface

3. Examples of monocular vision control

4. Examples of binocular vision control

5. Summary

Path of demo source code of this
lesson: RflySimAPIs\PythonVisionAPI

Content

2

1. Setup Instructions

1.1 RflySim platform configuration

3

• When this platform is used for vison controller
development, it is recommended to re-run the
"OnekeyScript.p" script and use the
configuration as the right figure to run the
script as follows:

• Use the PX4 SITL software-in-the-loop firmware
to compile and enter command
"px4_sitl_default"

• Use the latest PX4 firmware PX4-1.10.2, select
"4" for the firmware version

• Use Win10WSL compiler, so select "1" for the
compiler

• Whether to shield PX4 output items, select “no"
• Click the "OK" button to start the installation.

If you want to use Pixhawk for Hardware-In-the-Loop (HIL)
simulation, you also need to correctly configure the Pixhawk
autopilot through QGC according to the method in Section 2.5
of "RflySim_Lesson_01_Introduction.pdf"

1. Setup Instructions

1.2 VS Code editor installation
• The Python editor of this course recommends using VS Code (not necessary, but easy to

read the source code and run), the installation steps are as follows:
• Visit https: //code.visualstudio.com/Download to download the latest VS code installation

package (you can also use VSCodeUserSetup-x64-***.exe in the
RflySimAPIs\PythonVisionAPI folder)

• When installing, just select the default configuration. Pay attention to the settings in the
lower right figure to facilitate opening Python files directly.

4

https://code.visualstudio.com/Download

1. Setup Instructions

1.3 VS Code editor configuration
• Go to VS Code “Extensions” page, search and install “Python”.
• Automatically identify file encoding (solve the problem of

Chinese gibberish characters). Open VS Code, click setting icon and then “Settings”
button; or click Menu bar: File → Preferences → Settings → Search for “auto guess”,
check to enable automatic guessing of file encoding function

5

1. Setup Instructions

1.4 VS Code Python environment configuration
• Open the "RflySimAPIs\Python38Scripts\ImgCVShow.py" file (or any .py suffix file)

with VS code. As shown in the figure below, click the yellow word "Select Python
interpreter" option in the lower left corner, and click "Enter interpreter path" in the
pop-up item.

• As shown in the figure on the right, in the pop-up explorer window, select the
python.exe file in the Python38 folder under the installation directory (default C:
\PX4PSP), and click "Select Interpreter".

6

1. Setup Instructions

1.4 VS Code Python program running
• Open the "RflySimAPIs\Python38Scripts\ImgCVShow.py" file with VS Code.
• Click the triangle arrow on the upper right side of VS Code to run, and the terminal

window of "TERMINAL" pops up at the bottom of the VS Code interface to check the
running status of the script. At the same time, a picture shown in the lower right pops up,
indicating that the environment is installed correctly.

7

1. Setup Instructions

1.5 VS Code Python program force close
• As shown on the left, click the down triangle arrow next to the Python button at

the bottom right to expand and display all terminal windows, and press the right
mouse button on the current terminal window entry (“1: Python” in the figure
below). As shown in the figure on the right, click “Kill Terminal" in the pop-up
menu to terminate the Python program.

8

1. Setup Instructions

1.6 Python38Env environment
• The Python38 folder under the installation directory (C: \PX4PSP by default) contains the

latest Python operating environment, which already contains a series of tools such as
OpenCV, pymavlink, pip and etc., which can be directly used for basic top-level control
algorithm development for drone

• This Python environment is completely independent from other environments installed on
Windows. Also, not affect other Python environments or be affected by their configuration.

• Double-click the desktop "Python38Env" shortcut or double-click the
"RflySimAPIs\Python38Env.bat" script, the terminal window shown below (registered Python
directory) will pop up, and the Python environment can be called

9
Input commands at here

1. Setup Instructions

1.7 Use of Python38Env
• The root directory of this Python environment is "RflySimAPIs\Python38Scripts",

copy the Python script file ***.py ending in .py to this folder, and then execute
the command "python ***.py" to run the script

• For example: enter the command "python ImgCVShow.py" to run the python
script and open an image like the example in Section 1.4.

10

1. Setup Instructions

1.8 Python38Env environment ulog log
reading
• This Python environment has installed

pyulog, which can be used to parse
the PX4 controller's .ulg format logs
and generate excel files, which can
be used for log data analysis.

• Since a "log.ulg" file has been stored in
the "RflySimAPIs\Python38Scripts"
folder, you can directly double-click
"RflySimAPIs\Python38Env.bat" to open
the Python environment, and enter
"ulog2csv log.ulg" to get the log file

• These files can be opened with Excel,
MATLAB or other statistical analysis
software for flight data analysis.

11

1. Setup Instructions

1.9 Python38Env function extension
• This Python environment has installed

OpenCV, Pymavlink, numpy, pyulog and
other module libraries, and supports the
installation of other components.

• The installation of other components can
be installed with the pip install ***
command

• The current Python libraries commonly
used include Scipy, Pillow, Matplotlib,
Panda. Take the installation of Scipy as an
example, just double-click the
"RflySimAPIs\Python38Env.bat" file and
enter "pip install scipy" in the command
line to automatically download and
complete the installation

• Users can test and install other
modules/libraries by themselves

12

If the online installation is too slow (poor network or
the installation package too large), you can go to
https: //pypi.org/ to search and download the
installation package file in ***.whl format offline, and
copy the ***.whl file to " RflySimAPIs\Python38Scripts"
directory, and then use the command "pip install
***.whl" to install offline

https://pypi.org/

1. Setup Instructions

1.10 Operation of vision control demo
• The vision control demos of this course are stored in the

"RflySimAPIs\PythonVisionAPI" path. These demos can be run using VS Code or
Python38Env.

• Suppose you want to run the "2-ShootBall\ShootBall3.py" example script in the
"RflySimAPIs\PythonVisionAPI" directory. The first method is to open the
ShootBall3.py file with VS Code, and then run it directly according to the method
in Section 1.4.

• The second method is to double-click to open the "RflySimAPIs\PythonVisionAPI\
Python38Run.bat" file, and enter: "python 2-ShootBall\ShootBall3.py" in the pop-
up window to run this script

13

1. Setup Instructions

1.11 vision simulation difficulties and RflySim platform solutions
• Question 1: How to achieve high-speed image capture?

– Solution: Don't take pictures inside the UE4 program (Airsim uses this method, and the
image acquisition will cause serious frame drop). Use Python/C/Simulink to directly
read RflySim3D images, reducing intermediate links, and 720P multi-window image
reading consumes time Within 5ms (above 200Hz), and will not interfere with UE4
rendering efficiency

• Question 2: How to achieve multi-lens camera acquisition?
– Solution: Support to open any RflySim3D window, and each window can be

independently configured to display the viewing angle (airborne camera or ground
observation viewing angle and etc.)

• Question 3: How to configure the resolution, camera position, and which vehicle to take
pictures?
– Solution: It supports adjustment via keyboard shortcuts, and also supports sending

commands via UDP to control the viewing angle display parameters of RflySim3D.
• Question 4: How to ensure that the simulation results can be directly used in the real vehicle?

– Solution: The bottom layer of the control interface we provide can directly send and
receive MAVLink data. Since the cross-platform Python language is used, it can be
used directly by copying the airborne computer. (Follow-up will provide Simulink
vision interface to support code generation) 14

Content

1. Setup Instructions

2. Use of basic interface

3. Examples of monocular vision control

4. Examples of binocular vision control

5. Summary

15

2. Use of basic interface

2.1 The simplest Python3 file running test
• In the "RflySimAPIs\Python38Scripts" folder,

create a new txt file and rename it to
hello.py

• Right-click the file, open it with VS Code,
and type the following code in it:

print("Hello, RflySim!")
• Run in VS Code, check the result as shown

on the right
• In the same way, double-click the

Python38Env desktop shortcut or
"RflySimAPIs\Python38Env.bat" to view the
running results as shown below.

16

2. Use of basic interface

2.2 Basic Python3 syntax learning
• Visit: https: //docs.python.org/3/tutorial/ to

understand the basic knowledge and
programming method of learning Python3
(similar to MATLAB language) easy to get
started

• Note: Python2 has stopped updating, it is
recommended that you learn Python3
directly for development

• Python3 uses UTF-8 encoding by default, so
non-english characters are natively
supported

• Python uses indentation to distinguish code
levels, so you must pay attention to
indentation when writing code (Guides,
indent-rainbow and other plugins can be
installed in VS Code to assist)

17

https://docs.python.org/3/tutorial/

2. Use of basic interface

2.3 Basic Python-OpenCV
learning
• OpenCV is an open

source cross-platform
computer vision and
machine learning
software library, widely
used

• Official tutorial URL: https:
//docs.opencv.org/4.0.0/

18

https://docs.opencv.org/4.0.0/

2. Use of basic interface

2.4 Pymavlink learning
• Pymavlink is the Python version of the

MAVLink communication protocol. It is
currently pre-installed in the platform
Python environment. It can easily
communicate with the real Pixhawk
hardware through serial port, UDP, TCP
and etc., for top-level control

• The official document URL is as follows:
https: //mavlink.io/en/mavgen_python.
Please learn its detailed use
instructions by yourself

• Note: Pymavlink is just a convenient
library function. If you have higher
customize requirements, you need to
learn how to use the MAVLink protocol

19

https://mavlink.io/en/mavgen_python

2. Use of basic interface

2.5 Introduction to the Python control interface
in RflySim
• The "RflySimAPIs\PythonVisionAPI\1-

PX4MavCtrlAPITest\PX4MavCtrlV4.py" file is
the Python control interface file of the RflySim
platform

• This interface includes interfaces for sending
and receiving MAVLink messages, UE4 scene
control, and Pixhawk Offboard control.

• The underlying data of this interface is in
MAVLink format, which can be connected to
the RflySim system for software/hardware-in-
the-loop simulation, or can be connected to
real Pixhawk hardware (via serial port or UDP
network) for real vehicle control.

20

2. Use of basic interface

2.6 Internal principle of PX4MavCtrlV4

• class PX4_CUSTOM_MAIN_MODE: #PX4 main module enumerated variable, used to set
the mode

• class PX4_CUSTOM_SUB_MODE_AUTO: #PX4 submodule enumeration variable
• class PX4MavCtrler: # RflySim's main communication interface class
• def InitMavLoop: #Enable MAVLink receiving thread, receive and update MAVLink

messages at any time
• def sat: #A saturation function, used to control the limit of the variable
• def SendMavCmdLong: #Send the COMMAND_LONG message of the MAVLink message
• def sendMavOffboardCmd: #Send the Offboard command to the flight controller to

enter the Offboard mode
• def sendMavOffboardAPI: # Update the data of Offboard message (the data will be

sent at a certain frequency)
• def SendVelNED: # Send the earth coordinate system speed command
• def sendUE4Cmd: # Send a command to UE4 to control the display of UE4
• def sendUE4Pos: # Send the three-dimensional coordinates of an object to UE4 to

display an object

21

2. Use of basic interface

2.6 Internal principle of PX4MavCtrlV4

• def SendVelFRD: #Send the body speed
• def SendPosNED: #Send the NED position, let the vehicle fly to the specified

position (relative to the unlock point)
• def initOffboard: # Initialize Offboard mode
• def endOffboard: # End Offboard mode
• def sendMavSetParam: # Send MAVLink message to change Pixhawk parameters
• def SendHILCtrlMsg: #Send rfly_msg message to the flight controller (see

Section 4.3 of Lesson 3)
• def SendMavArm: #Send unlock command
• def SendRcOverride: #Send and simulate remote control signal
• def sendMavManualCtrl: #Send and simulate the normalized remote control signal
• def SendSetMode: #Send and set Pixhawk mode
• def stopRun: #Stop running MAVLink data receiving thread
• def getMavMsg: #Update the data received by MAVLink

22

2. Use of basic interface

2.7 Interface usage example
• # "1-PX4MavCtrlAPITest\PX4MavCtrlAPITest.py"

is an example of Python used in the interface.
• #The specific code analysis is as follows:
• #Create a new MAVLink communication instance,

CopterSim’s UDP receving port is 20100
• mav = PX4MavCtrl.PX4MavCtrler(20100)
•

• # sendUE4Cmd: RflySim3D API to modify scene display style
• # Format: mav.sendUE4Cmd(cmd,windowID=-1), where cmd is a command string,

windowID is the received window number (assuming multiple RflySim3D windows are
opened at the same time), windowID =-1 means sent to all windows

• # RflyChangeMapbyName command means to switch the map (scene), the
following string is the map name, here will switch all open windows to the grass map

• mav.sendUE4Cmd(b'RflyChangeMapbyName Grasslands')

23

2. Use of basic interface

2.7 Interface usage example
• # sendUE4Pos: RflySim3D API to generate 3D objects and control position
• # Formart: mav.sendUE4Pos(CopterID, VehicleType, RotorSpeed, PosM, AngEulerRad, windowsID=0)
• mav.sendUE4Pos(100,30,0,[2.5,0,-8.086],[0,0,math.pi])
• # Send and generate a 3D object to RflySim3D, where: the vehicle ID is CopterID=100;
• # Vehicle type VehicleType=30 (a man); RotorSpeed=0RPM; Position coordinate PosM=[2.5,0,-8.086]m
• # Vehicle attitude angle AngEulerRad=[0,0,math.pi]rad (rotate 180 degrees to face the vehicle), the

receiving window number default windowsID=-1 (sent to all open RflySim3D programs)
• # VehicleType options: 3 for quadcopters, 5/6 for hexacopters, 30 for persons, 40 for checkerboard

grids, 50/51 for cars, 60 for luminous lights, 100 for flying-wing or fixed-wing aircraft, 150/152 for circular
square targets

• # command RflyChange3DModel followed by vehicle ID + 3D style to switch
• mav.sendUE4Cmd(b'RflyChange3DModel 100 12’)
• #Send a message to make CopterID=100 (the character just created) in all scenes, here style=12

represents a walking person

24

2. Use of basic interface

2.7 Interface usage example
• # Command RflyChangeViewKeyCmd means to simulate the shortcut key pressed in RflySim3D,

shortcut key B 1 means to switch the focus to the object with CopterID=1
• # Here is set to send to window 0, other windows do not send
• mav.sendUE4Cmd(b'RflyChangeViewKeyCmd B 1',0)

• # Shortcut key V 1 means to switch to the 1st onboard camera (front camera)
• mav.sendUE4Cmd(b'RflyChangeViewKeyCmd V 1',0)

• # RflyCameraPosAng x y z roll pith yaw
• # Set the position of the camera relative to the center of the body, the default is 0
• # Here set the position of the front camera to [0.1 -0.25 0]
• mav.sendUE4Cmd(b'RflyCameraPosAng 0.1 0 0',0)

• # r.setres 720x405w is a built-in command of UE4, which means to switch the resolution to
720x405

• mav.sendUE4Cmd(b'r.setres 720x405w',0)

25

2. Use of basic interface

2.7 Interface usage example

• # Send a shortcut command to window 1 to switch the focus to vehilce 1
• mav.sendUE4Cmd(b'RflyChangeViewKeyCmd B 1',1)

• # Send a shortcut key control command to window 0, N 1 shortcut key means to switch the perspective to the
ground fixed perspective 1

• mav.sendUE4Cmd(b'RflyChangeViewKeyCmd N 1',1)
•
• # Set the current camera Field of View (FOV) to 90 degrees (the default value is 90 degrees in RflySim3D), the

range of FOV is 0 to 180 degrees
• mav.sendUE4Cmd(b'RflyCameraFovDegrees 90’,1)

• # Set the current camera position here as [-2 0 -9.7]
• mav.sendUE4Cmd(b'RflyCameraPosAng -2 0 -9.7',1)

• #Turn on MAVLink to monitor CopterSim data and update it in real time.
• mav.InitMavLoop()

• #Display location information received from CopterSim
• print(mav.uavPosNED)

26

2. Use of basic interface

2.7 Interface usage example

• #Turn on Offboard mode
• mav.initOffboard()

• # Send the desired position signal, fly to the target point position 0,0, -1.7, the yaw angle is 0
rad

• mav.SendPosNED(0, 0, -1.7, 0)

• #Send arm command to arm the drone
• mav.SendMavArm(True)

• # Send the desired speed signal, 0.2m/s downwards, the z-axis downward is positive
• mav.SendVelNED(0, 0, 0.2, 0)
• #Exit Offboard control mode
• mav.endOffboard()

• #Exit MAVLink data receiving mode
• mav.stopRun()

27

2. Use of basic interface

2.8 Enable VS Code Python debugging
function
• In order to facilitate the observation of

the running results of each line of Python
code, the debugging function of Python
needs to be turned on here. The
configuration process is as follows:

• Double-click
"RflySimAPIs\Python38Env.bat" to open
the Python environment, and enter the
command "pip install pylint" to install the
Python checker pylint. The result of
successful installation is shown on the
right

• Close the window and start code
debugging with VS Code

28

2. Use of basic interface

2.9 Interface usage example
• Locate the "RflySimAPIs\Python VisionAPI\1-PX4MavCtrlAPITest"

folder in Windows Explorer
• Double-click the "PX4MavCtrlAPITest.bat" script to open the PX4 SITL

simulation system of one vehicle
• Open the "PX4MavCtrlAPITest.py" file with VS Code, click the

breakpoints (red dot) in front of each key statement as shown in the
right picture, and turn on the debugging mode as shown in the
picture below. Click the arrow button in the lower right picture to
execute the statements in sequence

29

1. Click the
Debug button

2. Click the “Run and Debug” button
3. Choose the Python file

2. Use of basic interface

2.10 Experimental results of interface
examples
• The phenomenon of this demo is

that the python program sends a
series of instructions, a new target
of a walking person is created in
the RflySim3D program, the angle
of view form, size, and position are
set, and control instructions are
sent to the simulated drone to
make it take off and land. .

• As shown on the right, this
example will open two RflySim3D
windows, one is the front camera,
the other is the observation from
God

30

Note: If the computer performance is poor and
the flight shakes, you can manually close the
opened RflySim3D window (observation angle)

2. Use of basic interface

2.10 End simulation of interface example
• In the command prompt window opened by the "PX4MavCtrlAPITest.bat" script shown in

the figure below, press the Enter key (any key) to quickly close all programs such as
CopterSim, QGC, RflySim3D, etc.

• As shown in the figure on the right, follow the steps in Section 1.5 of this lesson in VS Code
and click “Kill Terminal" to exit the script

• Close the VS Code window opened by "PX4MavCtrlAPITest.py"

31

Enter any key in this window to
quickly close all simulation windows

2. Use of basic interface

2.11 Python interface to capture image
from RflySim3D
• This script use the win32api of Windows to obtain

the handles of all RflySim3D windows, and
capture image from specific window for vison-
based control.

32

2. Use of basic interface

2.11 Python interface to capture screen from RflySim3D
• The following image presents the most important interface to acquire real-time

frame for OpenCV image processing and then MAVLink control

33

Content

1. Setup Instructions

2. Use of basic interface

3. Examples of monocular vision control

4. Examples of binocular vision control

5. Summary

34

3. Examples of monocular vision control

3.1 Experiment of drone impact on small ball
• In Windows Explorer, open and enter the "RflySimAPIs\PythonVisionAPI\2-ShootBall" folder, the

contents of which are as shown in the figure below
• Among them, "PX4MavCtrlV4.py" is the interface file introduced in the previous section,

"ShootBall3.py" is the main Python program of this demo, “ScreenCapApiV4.py” is the API to
capture screen from RlfySim3D, "ShootBall3HITL.bat" is the script to quickly start the hardware-in-
the-loop simulation, "ShootBall3SITL.bat" It is a script to quickly start software-in-the-loop
simulation. As shown in the figure on the right, the difference between the desktop S/HITLRun
shortcut and the scripts is: "UE4_MAP" map scene variable selects the vision flat grass scene
"VisionRingBlank"; secondly, "UDPSIMMODE" communication UDP mode Select the "Mavlink_Full"
mode to facilitate communication with Python; finally open two RflySim3D windows

351. MAVLink API

2. Screen
capture API

3. Main program

4. HITL start
script

5. SITL start
script

3. Examples of monocular vision control

3.2 Analysis of Impact Ball Experiment Code
• Open the "ShootBall3.py" file with VS Code, the algorithm to acquire front

camera image from RflySim3D and compute velocity commands to the Pixhawk
are presented as follows.

36

1. Import all
libraries

2. Import
MAVLink and
Vision APIs

3. Vision function to
calculate the location
and radius of red ball

3. Examples of monocular vision control

3.2 Analysis of Impact Ball Experiment Code

37

4. Controller function
to obtain vehicle
velocity error based
on pixel error

5. Image processing function to
process image and obtain velocity
control signals for Pixhawk

6. Saturation function to
limit maximum velocity
output for safety

3. Examples of monocular vision control

3.2 Analysis of Impact Ball Experiment Code

38

8. Send
commands to
change the
display image
in RflySim3D7. Initialize MAVLink

connection and all
variables

3. Examples of monocular vision control

3.2 Analysis of Impact Ball Experiment Code

39

9. Acquire the
RflySim3D front
camera view for
image processing

10. Generate a
timer with 0.01s
interval (100Hz)

11. Arm the drone
and fly to 5m
above ground

12. Fly to -30,
-5m behind
the red ball

13. Process image
and obtain velocity
commands to
approach the ball

3. Examples of monocular vision control

3.3 The running effect of the impact ball
experiment
• Double-click to run the

"ShootBall3SITL.bat" file to start the
software-in-the-loop simulation system,
and then run the "ShootBall3.py"
program. Generate a red sphere in the
front, let the drone fly a distance to the
left and rear, and turn on vision tracking,
and fly close to the small ball then stop.

• To use hardware-in-the-loop simulation,
after setting up the flight controller, run
the "ShootBall3HITL.bat" script and enter
the flight controller serial port number to
start the hardware-in-the-loop
simulation system.

40

Python front camera
processed image

RflySim3D follow-up
observation angle

Note: If the computer performance is poor and the flight
shakes, you can manually close the opened RflySim3D
window (trailing observation angle)

RflySim: How to use Python/OpenCV to perform vision-based control
of a multicopter UAV to track a ball
Watch this video by clicking the following links:
YouTube: https: //youtu.be/PvxEfY7oMq4
Youku: https: //v.youku.com/v_show/id_XNDcwNjA4NTYwNA==.html

https://youtu.be/PvxEfY7oMq4
https://v.youku.com/v_show/id_XNDcwNjA4NTYwNA==.html

3. Examples of monocular vision control

3.4 UAV cross rings experiment
• In Windows Explorer, open and enter the "RflySimAPIs\PythonVisionAPI\3-

CrossRing" folder, the contents of which are as shown in the figure below
• Among them, "CrossRing3.py" is the main Python program of this demo;

"ShootBall3HITL.bat" and "ShootBall3SITL.bat" are different from the previous
example of hitting a small ball: "UE4_MAP" map scene variable is selected for
"VisionRing" in the vision looping scene. Note that the "UDPSIMMODE"
communication UDP mode also selects the "Mavlink_Full" mode.

42

3. Examples of monocular vision control

3.5 Code analysis of cross rings experiment

43

1. Saturation
function for
yaw rate

2. Task
switching
function
based on
flying
distance

3. Object
detection
function

4. Square
detection
function

3. Examples of monocular vision control

3.5 Code analysis of cross rings experiment

44

5. Circle
detection
function

6. Target
approaching
function

3. Examples of monocular vision control

3.5 Code analysis of cross rings experiment

45

7. Main function to initialize
MAVLink and configure RflySim3D

8. Check RflySim3D display OK

9. Takeoff at 5s and start
crossing rings control at 15s

10. Enter vision control loop

3. Examples of monocular vision control

3.6 Running effect of cross rings
experiment
• Double-click to run the

"CrossRing3SITL.bat" file to start the
software-in-the-loop simulation
system, and then run the
"CrossRing3.py" program.

• After taking off, the drone crosses
through the three rings in sequence,
and finally landed automatically.

• To use hardware-in-the-loop
simulation, after setting up the flight
controller, run the
"CrossRing3HITL.bat" script and enter
the flight controller serial port
number to start the hardware-in-
the-loop simulation system.

46

Python front camera
processed image

RflySim3D rear
tracking viewpoint

Note: If the computer performance is poor and the
flight shakes, you can manually close the opened
RflySim3D window (trailing observation angle)

RflySim: Vision-based navigation and control for multicopter crossing
rings experiment
Watch this video by clicking the following links:
YouTube: https: //youtu.be/PvxEfY7oMq4
Youku: https: //v.youku.com/v_show/id_XNDcwNjA4NTYwNA==.html

https://youtu.be/PvxEfY7oMq4
https://v.youku.com/v_show/id_XNDcwNjA4NTYwNA==.html

Content

1. Setup Instructions

2. Use of basic interface

3. Examples of monocular vision control

4. Examples of binocular vision control

5. Summary

48

4. Examples of binocular vision control

4.1 Binocular camera calibration experiment
• In Windows Explorer, open and enter the "RflySimAPIs\PythonVisionAPI\4-

BinocularCameraCalib" folder, the contents of which are as shown in the figure
below

• Among them, "BinocularCameraCalib4.py" is the main Python program of this
demo; "BinocularCameraCalib4.bat" is a batch startup script, double-clicking it
will automatically open three RflySim3D windows (left and right cameras +
trailing global observation angle); “PX4MavCtrlV4.py” is the Python
communication interface module of this platform.

49

4. Examples of binocular vision control

4.2 Analysis of binocular
camera calibration code
• Open the

"BinocularCameraCalib4.py"
file with VS Code

• The key code lines are shown
on the right, this script can
obtain images of multiple
windows at the same time

• Please read and study the rest
of the code according to the
previous explanation

50

1. Get the left and
right RflySim3D

window information

2. Time interval 3s (0.33Hz)

3. Set position and attitude of
checkerboard randomly

4. Get the
images from
left and right

cameras

5. Calibration
algorithm can
be added here

6. Display the
processed images

4. Examples of binocular vision control

4.3 Experimental results of binocular camera
calibration
• After running

"BinocularCameraCalib4.bat", then run
"BinocularCameraCalib4.py" is ok.

• Open multiple RflySim3D scenes, create
a new vehicle, configure binocular
position information, create a new target,
and place the target according to
random rules.

• Assignment 1: After acquiring the images
of the left and right cameras, implement
the online calibration algorithm.

• Assignment 2: Store the images of the left
and right cameras as pictures locally,
and then use the calibration toolbox of
MATLAB to find the parameters

51

Note: If the computer performance is poor and the
flight shakes, you can manually close the last opened
RflySim3D window (trailing observation angle), just use
the front left and right camera angles

RflySim: How to perform binocular vision control and apply to real
multicopter system
Watch this video by clicking the following links:
YouTube: https: //youtu.be/hm6i6UCQjCI
Youku: https: //v.youku.com/v_show/id_XNDcwNjA4NzgxMg==.html

52

https://youtu.be/hm6i6UCQjCI
https://v.youku.com/v_show/id_XNDcwNjA4NzgxMg==.html

4. Examples of binocular vision control

4.4 UAV binocular vision demo
• In Windows Explorer, open and enter the "RflySimAPIs\PythonVisionAPI\5-ManDetect"

folder, the contents of which are as shown in the figure below
• Among them, "ManDetect3.py" is the main Python program of this demo; the cascades

folder contains some feature files in XML format for face recognition; the difference
between "ManDetect3HITL.bat" and "ManDetect3SITL.bat" to the desktop shortcut is: The
"UDPSIMMODE" communication UDP mode also selects the "Mavlink_Full" mode; three
RflySim3D windows are opened, left and right cameras + trailing observation angles.

53

4. Examples of binocular vision control

4.5 Source code analysis of drone binocular vision
• Open the "ManDetect3.py" file with VS Code

54

1. initialize MAVLink
and configure
RflySim3D windows

2. Timer frequency 100Hz

3. Add face
recognition
xml files

4. Get images
from two
cameras

5. Image
process with
OpenCV

6. Show processed images

4. Examples of binocular vision control

4.6 Binocular vision operation effect
of UAV
• Run "ManDetect3SITL.bat" or

"ManDetect3HITL.bat", then run
"ManDetect3.py"

• Generate a walking person in RflySim3D
and set it to face the plane. After the
plane takes off, the face recognition
algorithm is turned on, and the face is
selected by the binocular box

• Assignment 1: Update the position of
the person in real time, achieve the
simulation of the person walking, and
write the vehicle tracking controller

• Assignment 2: Change to front-view +
down-view camera, verify tracking +
optical flow algorithm. 55

Note: If the computer performance is poor and the flight shakes,
you can manually close the last opened RflySim3D window (trailing
observation angle), just use the front left and right camera angles

RflySim: Obtain binocular camera images and perform face
recognition
Watch this video by clicking the following links:
YouTube: https: //youtu.be/hm6i6UCQjCI
Youku: https: //v.youku.com/v_show/id_XNDcwNjA4NzgxMg==.html

56

https://youtu.be/hm6i6UCQjCI
https://v.youku.com/v_show/id_XNDcwNjA4NzgxMg==.html

4. Examples of binocular vision control

4.7 Deployment of UAV Vision Algorithm
• Copy the Python code of the vision control to the onboard computer and replace

the RflySim3D vision image with the camera image to complete the deployment of
the vision algorithm

57

RflySim: Binocular flight platform introduction
Watch this video by clicking the following links:
YouTube: https: //youtu.be/hm6i6UCQjCI
Youku: https: //v.youku.com/v_show/id_XNDcwNjA4NzgxMg==.html

58

https://youtu.be/hm6i6UCQjCI
https://v.youku.com/v_show/id_XNDcwNjA4NzgxMg==.html

59

Thanks

	Multicopter Design and Control Practice Experiments� �RflySim Advanced Courses� Lesson 06: Vison-Based Control
	Content
	1. Setup Instructions
	1. Setup Instructions
	1. Setup Instructions
	1. Setup Instructions
	1. Setup Instructions
	1. Setup Instructions
	1. Setup Instructions
	1. Setup Instructions
	1. Setup Instructions
	1. Setup Instructions
	1. Setup Instructions
	1. Setup Instructions
	Content
	2. Use of basic interface
	2. Use of basic interface
	2. Use of basic interface
	2. Use of basic interface
	2. Use of basic interface
	2. Use of basic interface
	2. Use of basic interface
	2. Use of basic interface
	2. Use of basic interface
	2. Use of basic interface
	2. Use of basic interface
	2. Use of basic interface
	2. Use of basic interface
	2. Use of basic interface
	2. Use of basic interface
	2. Use of basic interface
	2. Use of basic interface
	2. Use of basic interface
	Content
	3. Examples of monocular vision control
	3. Examples of monocular vision control
	3. Examples of monocular vision control
	3. Examples of monocular vision control
	3. Examples of monocular vision control
	3. Examples of monocular vision control
	幻灯片编号 41
	3. Examples of monocular vision control
	3. Examples of monocular vision control
	3. Examples of monocular vision control
	3. Examples of monocular vision control
	3. Examples of monocular vision control
	幻灯片编号 47
	Content
	4. Examples of binocular vision control
	4. Examples of binocular vision control
	4. Examples of binocular vision control
	幻灯片编号 52
	4. Examples of binocular vision control
	4. Examples of binocular vision control
	4. Examples of binocular vision control
	幻灯片编号 56
	4. Examples of binocular vision control
	幻灯片编号 58
	幻灯片编号 59

