
Multicopter Design and Control
Practice Experiments

RflySim Advanced Courses
Lesson 03: External Control Interface

Dr. Xunhua Dai, Associate Professor,
School of Computer Science and Engineering,

Central South University, China;
Email: dai.xh@csu.edu.cn ;

https://faculty.csu.edu.cn/daixunhua

mailto:dai.xh@csu.edu.cn
https://faculty.csu.edu.cn/daixunhua

Content

1. Configuration of software & hardware

2. MAVLink communication analysis

3. PX4 official controller communication

4. Code generation controller communication

5. Summary

Path of demo source
code of this lesson: ”
RflySimAPIs\SimulinkC
ontrolAPI”

2

1. Configuration of software & hardware

1.1 Pixhawk hardware configuration (1) — online firmware download

3

1) Open the QGC ground station software;
2) As shown in the figure on the right, click the
gear icon in the toolbar to enter the settings
page, and then click the "Firmware" label to
enter the firmware burning page;
3) Connect the Pixhawk autopilot to the
computer with a USB cable. The software will
automatically recognize the Pixhawk
hardware, as shown in the lower right figure,
the firmware configuration window will pop up
on the right side of the interface, check “PX4
***”, and then click “ OK”, QGC will start to
download automatically (Internet connection
is required; if no internet, please refer to the
next page to use the local firmware file) and
install the latest PX4 firmware into Pixhawk;

Note: The examples in this section need to
use the official firmware of PX4, any version
is fine, the latest firmware is selected here

1. Configuration of software & hardware

1.2 Pixhawk hardware configuration (2) — offline firmware download (when
the firmware cannot be downloaded online due to the network)

4

1) Open the QGC ground station software;
2) Click the "Firmware" tab, and connect the
Pixhawk autopilot with the USB data cable. The
ground station will automatically detect the
autopilot
3) Check the "advanced settings" checkbox;
4) Click triangle icon besides the “Standard
Version (stable)” tab – “Custom firmware file”,
then click “OK”;
5) In the file selection page that pops up, if you
use Pixhawk1 flight control, select
"RflySimAPIs\FlightControlExpCourse\code\e0
\4.PX4Firmwares\px4fmu-
v3_default1.10.1Stable.px4", if you use Pixhawk
4, select fmu-v5 firmware

Note: If there is no required firmware file in the folder,
please visit https: //github.com/PX4/Firmware/releases to
download and upload to Pixhawk

https://github.com/PX4/Firmware/releases

1. Configuration of software & hardware

1.3 Pixhawk hardware configuration (3) — offline
firmware generation
• Re-run the "OnekeyScript.p" script in MATLAB;
• Enter "px4_fmu-v3_default" on the second line (here

for Pixhawk 1, please select the compilation
command according to your flight control hardware)

• As shown in the figure on the right, set the 9th and
10th items to “yes" and “no" respectively, and keep
the other options as default. Click the "OK" button to
compile the official PX4 firmware without blocking
the output of the PX4 itself.

• Run the "PX4Upload" command in MATLAB to pop
up the firmware burning page. At this time, insert the
Pixhawk flight controller to burn the official firmware.

5

Note: Try this method only when the first two methods are
invalid; the following figure is for the advanced version of
RflySim, if it is the basic version of RflySim, please use the
default firmware and compiler version.

1. Configuration of software & hardware

1.4 Pixhawk HIL simulation mode

6

• After the firmware is uploaded, the autopilot
will automatically restart and re-connect to the
QGC; at this time, as shown on the right, enter
the "Airframe" tab, select the airframe as "HIL
Quadcopter X", and then click on the " Apply
and Restart" button, the autopilot will restart
automatically at this time;

• After restarting, QGC will automatically look for
the serial port and connect to Pixhawk. At this
time, check each configuration page to
ensure that Pixhawk enters hardware-in-the-
loop (HIL) simulation mode.

• After finishing the radio control (RC) transmitter
calibration and mode setting, unplug the RC
receiver on Pixhawk, this course does not need
to connect the RC receiver

1. Configuration of software & hardware

1.5 PX4 SITL configuration（only for RflySim
advanced version）
• Re-run the "OnekeyScript.p" script, configure it

as shown on the right, and click "OK"
• This configuration is used to run the SITL

simulation mode of PX4, so that we can run a
complete PX4 controller under Windows, so that
it can be simulated without Pixhawk hardware.
The key configuration is as follows:

• Compile command: "px4_sitl_default"
• Firmware version: "4“ - ”PX4 1.10.2”
• Compiler: "1" — “Win10WSL”
• Whether to pre-compile the firmware: “yes"
• Whether to block the PX4 control output: “no"—

here the official PX4 firmware is used for top-
level external control

7

8

1. Configuration of software & hardware
1.6 PX4 HITL simulation test
• If you use RflySim Advanced Edition,

please insert Pixhawk, and then directly
run the HITLRun shortcut on the desktop,
enter the serial port number in the pop-
up window, and press Enter to start the
hardware-in-the-loop(HIL) simulation
system

• If you use RflySim basic version, please
insert Pixhawk, open the CopterSim
software, select the flight control serial
port in the “Select Pixhawk Com." drop-
down box, and click “Start Simulation",
and then manually open QGC and
3DDisplay

• In QGC, click the paper plane icon -
Takeoff - Slide to confirm, you can see
that the drone takes off automatically in
the view, indicating that the HIL
configuration is correct.

Note: no matter SIL or HIL simulation, you should wait until
CopterSim show message “** EKF initialization finished” on the UI,
then you can use QGC/Simulink/Python to control the drone.

1. Configuration of software & hardware

1.7 PX4 SITL simulation (Pixhawk hardware is not required)
• This function is only available in the advanced version of

RflySim (corresponding to the setting in Section 1.5)
• Double-click the "SITLRun" shortcut on the desktop and

enter the number "1" to start one vehicle SIL simulation
system

• Same as the previous page, control the drone to takeoff in
QGC. If it can takeoff automatically, it means that the
platform is configured correctly.

• Principle: PX4 SITL is a real-time operating system that
simulates Pixhawk in the Ubuntu environment of Win10WSL,
thereby running a complete PX4 controller, and
connecting with CopterSim through the network to realize
the interaction of sensors/control commands, forming a
control simulation closed-loop system, and inserting
Pixhawk HITL by hardware has the same effect

• Note: Under PX4 SITL simulation, QGC can also be used to
configure participation and obtain log files (stored in the
installation directory: Firmware\build\px4_sitl_default\
instance_1) 9

1. Configuration of software & hardware

1.8 Install Visual Studio 2017 (other versions can also be used,
MATLAB can recognize it)
• The Visual Studio compiler is needed in many places in subsequent courses, such as MATLAB
• The use of S-Function Builder module, Simulink automatically generates C/C++ model code, etc.
• It is recommended to install Visual Studio 2017. The online installation steps (internet required) are

as follows:
• Double-click "RflySimAPIs\SimulinkControlAPI\VS2017Installer\vs_community2017.exe"

10

• This course content only needs to check
the “Desktop development with C++" on
the right.

• Note: If you want to use UE4 C++
development in the future, you can also
check the latest Window 10 SDK in the
“Installation details" on the right; then
click the “Individual components" tab
and check .NET 4.7.2 (or the latest version)
and the corresponding pack package.
Click install again.

Note: Visual Studio compiler is
needed in many examples in this
section, please install in advance

1. Configuration of software & hardware

1.9 Configure C++ Compiler for
MATLAB
• Enter the command "mex -

setup" in the MATLAB command
line window

• Generally speaking, the VS 2017
compiler will be automatically
recognized and installed. As
shown in the right figure, "MEX
configured to use ‘Microsoft
Visual C++ 2017’ for", indicating
that the installation is correct

• This page can also switch to
other compilers such as Visual
Studio 2013/2015/2017

11

content

1. Configuration of software & hardware

2. MAVLink communication analysis

3. PX4 official controller communication

4. Code generation controller communication

5. Summary

Path of demo source
code of this section:
“RflySimAPIs\SimulinkCo
ntrolAPI\MavlinkDemo”

12

2. MAVLink communication analysis

2.1 MAVLink (Micro Air Vehicle Link)
• It is a communication protocol for small unmanned vehicles, first released in 2009.

This protocol is widely used in the communication between Ground Control
Station (GCS) and Unmanned vehicles, as well as in the internal communication
between the onboard computer and the Pixhawk. The protocol is defined in the
form of a message library rules for parameter transmission. The MAVLink protocol
supports a variety of vehicles such as unmanned fixed-wing aircraft, unmanned
rotorcraft, and unmanned vehicles.

• Official use file website:
https: //mavlink.io/en/messages/common.html

• MAVLink source code:
https: //github.com/mavlink/mavlink

• QGroundControl ground station source code based on MAVLink:
https: //github.com/mavlink/qgroundcontrol

13

https://mavlink.io/en/messages/common.html
https://github.com/mavlink/mavlink
https://github.com/mavlink/qgroundcontrol

2. MAVLink communication analysis

2.2 The essence of MAVLink
• It is the encapsulation and analysis protocol of byte stream
• The packet format of MAVLink 1 shown as follow:

• The packet format of MAVLink 2 shown as follow:

14

2. MAVLink communication analysis

• Definition of bytes in the
MAVLink 1 package.

• STX Packet start sign
• LEN Payload Length
• SEQ Packet sequence
• SYS System ID
• COMP Component ID
• MSG Message ID
• PAYLOAD Data
• CKA Checksum A
• CKB Checksum B

15

2. MAVLink communication analysis

2.3 Analysis principle
• Read: All byte streams are stored in

the buffer, and the byte data in the
buffer is read sequentially. When the
STX flag bit is encountered (the flag bit
of MAVLink v1 is 0xFE, the flag bit of v2
is 0xFD), it starts to recognize a
message until the end of the message.
If the message verification is correct,
send the message to the handler

• Send: follow the previous page to
convert the message into a byte
stream

16

2. MAVLink communication analysis
2.4 receive analyze source code analysis
Given a byte stream buffer of a certain length, the length simply called length, with the
following script analysis, the onMavLinkMessage function will execute every time a MAVLink
packet is parsed.
for(int i = 0 ; i < length ; ++i){

msgReceived = mavlink_parse_char(MAVLINK_COMM_1, (uint8_t)buffer[i], &message,
&status);

if(msgReceived){
emit onMavLinkMessage(message);

}
}

Among them:
void onMavLinkMessage(mavlink_message_t message);
It is the processing function after a MAVLink message package is obtained. Users need to
identify the purpose of the current package (heartbeat package, GPS location, posture, etc.)
according to its ID, and extract the important data.

17

2. MAVLink communication analysis

2.4 receive analyze source code analysis
The analysis function is implemented as follows, jump to the corresponding _decode
function according to message.msgid, and decode the data
void onMavLinkMessage(mavlink_message_t message){

switch (message.msgid){
case MAVLINK_MSG_ID_GLOBAL_POSITION_INT: {
mavlink_global_position_int_t gp;
mavlink_msg_global_position_int_decode(&message, &gp);
outHilData.time_boot_ms = m_LastReceiveMavMsg;
outHilData.GpsPos[0]=gp.lat;
outHilData.GpsPos[1]=gp.lon;
outHilData.GpsPos[2]=gp.alt;
outHilData.relative_alt = gp.relative_alt;
outHilData.GpsVel[0]=gp.vx;
outHilData.GpsVel[1]=gp.vy;
outHilData.GpsVel[2]=gp.vz;
outHilData.hdg = gp.hdg;
break;

}
}

} 18

2. MAVLink communication analysis

2.5 Send source code analysis — send a MAVLink_hil_actuator_controls message
void sendHILCtrlMessage(uint8_t modes, uint64_t flags, float ctrl[])
{

mavlink_hil_actuator_controls_t hilctrl;
hilctrl.mode = modes;
hilctrl.flags = flags;
for(int i=0;i<16;i++){

hilctrl.controls[i]=ctrl[i];
}
mavlink_message_t mess;
mavlink_msg_hil_actuator_controls_encode(SystemID, TargetCompID, &mess, &hilctrl);
char buffer[500];
memset(buffer,0,500);
unsigned int length = mavlink_msg_to_send_buffer((uint8_t*)buffer, & mess);
udp.writeDatagram(buffer,length);//send the buffer out through USP or interface is ok

}

19

2. MAVLink communication analysis

2.6 MAVLink ID list of message package
• https: //mavlink.io/en/messages/common.html

20

Heartbeat package, ID = 0

https://mavlink.io/en/messages/common.html

2. MAVLink communication analysis

2.7 QGC ground
station view MAVLink
messages
On the MAVLink
Inspector page of
QGC, you can browse
all the MAVLink
packages sent by
Pixhawk, check the
frequency and specific
values of each
package

21

2. MAVLink communication analysis

2.8 Source code of MAVLink 2
Open folder
‘RflySimAPIs\SimulinkControlAPI\MavlinkDemo\mavlink\v2.0\common’. You
can see C++ source code of MAVLink, including all definition of all message
package.

22

2. MAVLink communication analysis

2.9 Simulink Encapsulation and Analysis Implementation of MAVLink Protocol
Open demo
“RflySimAPIs\SimulinkControlAPI\MavlinkDemo\MavlinkCodeDecode.slx”

23Data to send Data encode Data decode

Data show

Data Transfer

2. MAVLink communication analysis

• After clicking Run, we can see that we encapsulate the data
into byte stream data (uint8 byte stream) and len (byte stream
length) in Simulink, and then pass a parsing function to parse
the byte stream into sending data.

• This example is implemented by S-Function Builder, it will
automatically call the MAVLink header file when it is running,
and compile it into the .c/.mexw64/.tlc files shown on the right

• This demo can teach you how to call external C/C++ header
files in Simulink to implement your own algorithms.

24

2. MAVLink communication analysis

2.10 Simulink S-Function program method

25

• Open the .slx file and drag in an S-Function Builder
module from Simulink-User-Defined Functions, double-
click it to get the picture on the right

• Below picture shows how to use this module to
generate the MAVLink message mentioned above:
MAVLINK_MSG_ID_HIL_ACTUATOR_CONTROLS

2. MAVLink communication analysis

26

• Name the module and set the input and
output parameter names, dimensions, and
data types on the Data Type page

2. MAVLink communication analysis

• Import the MAVLink header file
• Enter the “Libraries” tab, and add the following code in the “includes”

box
• #define inline __inline
• #include ".\mavlink\v2.0\common\mavlink.h"

27

2. MAVLink communication analysis

• In the Outputs tab, add the C/C++ code that obtains the input data and packs it
into a MAVLink message, and puts it in the output ports data and len. Where data is
the uint8 matrix, and len is the effective length of the data.

• Note: Simulink S-function signals have no concept of scalar, and all input/output
signals are vectors. Therefore, although an output “len” is an one-dimensional
scalar, the assignment statement of "len=***" is wrong, so use "len[0]=***“ instead.

28

2. MAVLink communication analysis

• Check the option to generate TLC and MEX-file, and then click the
compile button, you can get the file that can be called by Simulink as
shown on the right.

29

2. MAVLink communication analysis

• Let's build a decoding module
for MAVLink messages

• Name it "mavlink_msg_receiver"
• Input and output ports,

completely opposite to the
previous module

30

2. MAVLink communication analysis

• As shown in the figure on the
right, set the decoded byte
stream in the Outputs tab
and parse out the code of
the MAVLink message.

• In the same way, on the
library file page, import the
MAVLink library file

• After setting the compilation
options, click the "build"
button to check whether the
tlc and mex files can be
generated correctly.

31

2. MAVLink communication analysis

2.11 Send arm command to the flight controller via Simulink/MAVLink (RflySim
Advanced Version only)
• Plug in Pixhawk, open CopterSim, set HITL simulation, set UDP_Mode to Mavlink_FULL

(RflySim Advanced version only), and click the "Start Simulation" button
• Open the demo "MavlinkDemo\MavSfunTest_Arm.slx" and run it, you can see

"Command ARM/DISARM ACCECPTED" in the message box of CopterSim, indicating
that the experiment was successful

32

2. MAVLink communication analysis

2.12 Simulate sending RC data via MAVLink (RflySim advanced version only)
Same as the previous step, open CopterSim hardware-in-the-loop, and run the
"MavlinkDemo\MavSfunTest_control RC.slx" demo to control the arming of Pixhawk and
send RC data to control drone take-off and landing, flight, etc.

33

2. MAVLink communication analysis

2.13 Simulink sends and receives MAVLink messages through the serial port
• Connect Pixhawk to computer, use CopterSim to start HIL simulation (you do not need

to set UDP_Mode so the basic version of RflySim is also applicable), use a digital
transmission (radio telemetry) module to connect Pixhawk to the computer,
remember the serial number of the radio telemetry module (if you don’t have a radio
telemetry, you can plug in Pixhawk directly without opening CopterSim, and enter the
serial port number of Pixhawk here). Note, the Baud rate of a radio is usually 57600.

• Open "MavlinkDemo\MavSfunTest_SerialCom.slx", double-click "Mavlink Serial
Input&Output", and enter the serial port number in it

34

2. MAVLink communication analysis

• In this example, you can obtain Pixhawk data through the serial port and send
control commands. This example can be directly used for real-time (through
data transmission) control of the Pixhawk multicopter real vehicle.

35

1. Configuration of software & hardware

2. MAVLink communication analysis

3. PX4 official controller communication

4. Code generation controller communication

5. Summary

Path of demo source
code of this section:
“RflySimAPIs\SimulinkCo
ntrolAPI”

36

Content

3. PX4 official controller communication

3.1 Simulink simulates sending the raw data of the RC to control the drone
First connect Pixhawk with CopterSim and start HIL simulation and open the 3D
software at the same time (RflySim Advanced version can directly run the Desktop
HITLRun to quickly open the HIL simulation, or run SITLRun to open the SIL simulation),
and then open "RflySimAPIs\SimulinkControlAPI\RadioControlAPI.slx" through
MATLAB and run.

37

UDP Receive Module,
listen to port 20101

Data from Pixhawk,
transfer by CopterSim
with struct

UDP
data
decode
module

Result Display

Pitch Stick

Roll Stick

Throttle Stick

Yaw Stick

UDP send
module, port
20100

Data encode
module

Send struct
data to
CopterSim
then transfer it
to Pixhawk

3. PX4 official controller communication

3.1 Simulink simulates sending the raw data
of the RC to control the drone
• First, drag the VeZ slider to the right (simulating

pushing up the throttle to pass the midpoint),
you can control the speed of the drone in the
Z direction and make the drone take off
vertically;

• Then, drag the VeX (simulate forward and
backward pitch stick) and VeY (simulate left
and right roll stick) sliders to achieve forward
and backward movement,

• Similarly, drag the Yaw slider (simulating the
left and right yaw sticks) to control the yaw
speed and the drone deflection.

38

3. PX4 official controller communication

3.1 Simulink simulates sending the raw
data of the RC system
• Double-click the "RCOverrideMavlink"

module, you can see the internal
information shown in the figure below

39

Make the 0~1
velocity signals
to 1000~2000’s
PWM signals Encode the PWM

signals to UDP struct

3. PX4 official controller communication

3.1 Simulink simulates sending the raw data of
the RC to control the drone
• Double-click the "RCControlTrans" module, you can see

the internal information shown below

40

This should be set to be consistent with
the RC calibration value, otherwise there
will be a response deviation problem

Body velocity Vx,Vy,Vz,yaw

Map velocity signals to
ch1~ch4 channels, and
normalize it to 0~1

Ch5~Ch6 stick

Fill CH7~CH16 channels

Limit to 0~1
Map it to RC signals
about 1100~1900

3. PX4 official controller communication

3.1 Simulink simulates sending the raw data of the RC to control the drone
• Double-click to enter the "CMDPack" module, you can see the internal information shown

in the figure below
• Two-layer encapsulation (to ensure data security)
struct inHILCMDData{

uint32_t time_boot_ms;
uint32_t copterID;
uint32_t modes;
uint32_t flags;
float ctrls[16];

};

struct netDataShortShort {
TargetType tg;
int len;
char payload[112];

}netDataShortShort;
41

Set here to be consistent with the calibration value of the RC system, otherwise
there will be a problem of response deviation. First, send the data amplitude to the
inHILCMDData structure, and then store the structure data in the payload data
segment of the netDataShortShort structure, and finally send the data.

3. PX4 official controller communication

3.1 Simulink simulates sending the raw data of the RC to control the drone
• After CopterSim receives the UDP message from Simulink, it will generate the MAVLink

message RC_CHANNELS_OVERRIDE (RC channel coverage), and forward it to the Pixhawk
module that implements the RC signal

42

3. PX4 official controller communication

3.1 Simulink simulates sending the raw data of the RC to control the drone
• Go back to the outermost layer and click to enter the "UDP_SIL_State_Receiver" module

43

Data check, if data is not
OK then keep the last data.

Get GPS position from CopterSim

Struct decode

Judge the
data validity

3. PX4 official controller communication

3.1 Simulink simulates sending the raw data of the RC to control the drone

44

struct outHILStateData{ // mavlink data forward from Pixhawk
uint32_t time_boot_ms; //Timestamp of the message
uint32_t copterID; //Copter ID start from 1
int32_t GpsPos[3]; //Estimated GPS position，lat&long: deg*1e7, alt: m*1e3 and up is positive
int32_t GpsVel[3]; //Estimated GPS velocity, NED, m/s*1e2->cm/s
int32_t gpsHome[3]; //Home GPS position, lat&long: deg*1e7, alt: m*1e3 and up is positive
int32_t relative_alt; //alt: m*1e3 and up is positive
int32_t hdg; //Course angle, NED,deg*1000, 0~360
int32_t satellites_visible; //GPS Raw data, sum of satellite
int32_t fix_type; //GPS Raw data, Fixed type, 3 for fixed (good precision)
int32_t resrveInit; //Int, reserve for the future use
float AngEular[3]; //Estimated Euler angle, unit: rad/s
float localPos[3]; //Estimated locoal position, NED, unit: m
float localVel[3]; //Estimated locoal velocity, NED, unit: m/s
float pos_horiz_accuracy; //GPS horizontal accuracy, unit: m
float pos_vert_accuracy; //GPS vertical accuracy, unit: m
float resrveFloat; //float,reserve for the future use

}

• Principle: Receive the
data of the
outHILStateData structure
sent by CopterSim via UDP,
and extract the value of
interest from it

• CopterSim data resource:
forward MAVLink message
from Pixhawk, including
LOCAL_POSITION_NED，
ATTITUDE, HOME_POSITIONE，
STIMATOR_STATUS, and etc.

3. PX4 official controller communication

3.2 Simulink simulates sending a normalized RC signal to control the drone
• The previous example sent the raw data of the RC system, so the PWM output value needs

to be consistent with the RC calibration value, otherwise control deviation may occur
• Open "RflySimAPIs\SimulinkControlAPI\ManulControlAPI.slx", and get a demo with the

same function as the previous example. The experiment process is the same, but this demo
doesn't need to focus on the RC calibration value

45

3. PX4 official controller communication

3.2 Simulink simulates sending a normalized RC signal to control the drone
This message is a MAVLink message that implements MANUAL_CONTROL. In actual flight, the
signal can also be sent through digital transmission to reproduce the control command.

46

3. PX4 official controller communication

3.3 Simulink simulates sending a controlled drone using Offboard mode
• Offboard mode is a control mode of drones. Usually the onboard computer or

ground computer (host computer) is used to control the speed, position, attitude
of the drone in real time. The drone can be treat as a whole object, focusing on
the top-level vision and swarm algorithm development.

• The RC signal control cannot quantitatively control the speed of the drone, so it is
not convenient to use the Offboard control mode, but the RC signal control mode
is the closest way to human operation, and it has better effects in some high-
maneuver performance control.

• The follow-up experiments of this course are all to see the drone as a whole sub-
object (receive and implement speed/position/acceleration/route and other
commands), so the subsequent series of experiments will mainly use the Offboard
mode to control the drone. Since the Offboard mode is a function provided by
the official PX4 controller, you need to make sure that Pixhawk is running the
official firmware (mentioned in the previous settings).

47

3. PX4 official controller communication

3.3 Simulink simulates sending a controlled drone using Offboard mode
• Enable CopterSim's HIL (or SIL) simulation system
• Open "RflySimAPIs\SimulinkControlAPI\OffboardAPI.slx" to run, you can see that the drone

will automatically take off to a height of 10m at first, then switch the "speed/position
control" switch, drag the slider, you can enter speed 5m/s on direction X (or drag Slider VeX
to the desired value), observe whether the speed is consistent with the given speed in QGC

48Input altitude PosZ=10m

Control
Sliders

Send body frame
target velocity

Send earth frame
target velocity

Switch body
and earth
velocity

Switch velocity/
position control

Send target position

3. PX4 official controller communication

49

Data in Simulink

Data in CopterSim

Data in QGC

Real time
scene in
RflySim3D

3. PX4 official controller communication

3.3 Simulink simulates sending a controlled drone using Offboard mode
(recommended)
• Principle: This example will make PX4 enter the Offboard mode, then send a MAVLink

message of SET_POSITION_TARGET_LOCAL_NED to control the speed, position, and angle of
the drone. This command does not require the drone to perform RC calibration or modal
settings, just specify the specified speed or position directly.

• Three module examples are shown in the OffboardAPI.slx file. VelEarthFrameOffboardCtrl is
the speed control module in the earth coordinate system

• VelBodyFrameOffboardCtrl is the speed control in the body coordinate system
• PosTargetEarthFrameOffboardCtrl is the position control module in the earth coordinate

system (given the relative take-off point x, y, z coordinates, the drone will automatically fly to
this point and hover).

• The implementation methods of the three modules are exactly the same, except that
several parameters of the Offboard message (position/speed control mode & body/earth
coordinate system) are different. The Offboard control command is based on the disarmed
position as the Home_Position coordinate as the origin relative coordinate (Local_Position),
so the position command sent refers to the relative coordinate value of flying to the relative
armed position.

50

3. PX4 official controller communication

3.3 Simulink simulates sending a controlled drone using Offboard mode
(recommended)
• The Offboard mode interface of Simulink is shown in the figure below, you can

combine the commands that need to be controlled by yourself

51

Enable which control
signals (velocity,
position, acceleration)

Enable which frame

Signals of Position/ Velocity/
Acceleration/Yaw/Yawrate

3. PX4 official controller communication

3.3 Simulink simulates sending a controlled drone using Offboard mode https:
//mavlink.io/en/messages/common.html#SET_POSITION_TARGET_LOCAL_NED
achieve method of MAVLink message shows as below picture

52

https://mavlink.io/en/messages/common.html#SET_POSITION_TARGET_LOCAL_NED

3. PX4 official controller communication

53

Content

1. Configuration of software & hardware

2. MAVLink communication analysis

3. PX4 official controller communication

4. Code generation controller communication

5. Summary

Path of demo source
code of this section:
“RflySimAPIs\SimulinkCo
ntrolAPI\Rfly_API_CTRL”

54

4. Code generation controller communication

4.1 Automatic code generation environment
configuration
• The Pixhawk control algorithm generated for Simulink

can also be controlled through the QGC/Simulink
API. To run the example in this section, you need to
use Simulink code to generate the controller, so you
need to re-run the installation script, as shown in the
right figure (RflySim Advanced Edition) to block the
PX4's own output. Note: Please use px4fmu-
v3_default, PX4-1.7.3 firmware, and Msys2 compiler
for RflySim basic version

• Note: The compilation command needs to be
modified according to your own hardware

• Note: The code automatically generated by Simulink
currently does not support the px4_sitl_default
compilation command, so it does not support PX4
SITL simulation. The examples in this section need to
use Pixhawk hardware for HIL simulation.

55

Note: The content of this section is mainly aimed at the external
communication problem of the controller developed with Simulink in the
course "RflySim_Lesson_02_Flight_Control_Experiments.pdf" (i.e., the series
of experiments in the book "Multcopter Design and Control Practice").

4. Code generation controller communication

4.2 Use the RC signal generated by Simulink to control the controller designed
by Simulink
You can use the RC signal output by Simulink to control our own designed attitude
controller, such as "RflySimAPIs\FlightControlExpCourse\code\e0\3.DesignExps\
Exp4_AttitudeSystemCodeGen_old.slx"
First, open "Exp4_AttitudeSystemCodeGen_old.slx" to compile the firmware and burn
Pixhawk, then use CopterSim to connect to Pixhawk and start the HIL simulation (the
advanced version can directly run the desktop HITLRun and quickly open the HIL).

56

• Open and run the
"RadioControlAPI.slx" file,
you can control the
drone to take off and
move forward and
backward. Data can also
be observed in QGC

Armed

Analyze
MAVLink Inspector

4. Code generation controller communication

4.2 Use the RC signal generated by Simulink to control the controller designed by Simulink
• Principle: To further explain the principle, the RadioControlAPI.slx file sends the MAVLink

message of RC_CHANNELS_OVERRIDE to Pixhawk, and the RC module used in
Exp4_AttitudeSystemCodeGen_old.slx will receive the MAVLink message, so it can respond.

• Similarly, if you need your own generated code to respond to the input in
ManulControlAPI.slx and OffboardAPI.slx, you need to receive the corresponding uORB
messages in the Simulink controller respectively. Among them, ManulControlAPI.slx
corresponds to the uORB message of "MANUAL_CONTROL_SETPOINT", and OffboardAPI.slx
corresponds to the uORB message of "POSITION_SETPOINT".

• Note: ManulControlAPI.slx corresponds to the demo of "Exp4_AttitudeSystemCodeGen.slx"
code generation, and can respond to the "MANUAL_CONTROL_SETPOINT" message.

57

4. Code generation controller communication

4.3 Send and receive customized messages using Simulink
• The RflySim platform also provides an external program to communicate with its

Simulink controller. It sends uORB messages of rfly_ctrl.msg (see Firmware\msg
folder). It is defined as follows:

• The uORB message can be sent by an external program to send MAVLink messages
to achieve the "HIL_ACTUATOR_CONTROLS" message, and its 16-dimensional control
amount corresponds to the following definition.

58

4. Code generation controller communication

4.3 Send and receive customized messages using Simulink
• Open RflySimAPIs\SimulinkControlAPI\Rfly_API_CTRL\Rfly_ Mavlink_Receiver.slx

with MATLAB, compile the generated code, and burn it to Pixhawk. As shown in
the figure below, it received the uORB message of rfly_ctrl, replacing the original
RC signal.

59

4. Code generation controller communication

4.3 Send and receive customized messages using Simulink
• Enable the hardware-in-the-loop simulation of CopterSim and Pixhawk, run the

"Rfly_API_CTRL\Rfly_Mavlink_API_Sender.slx" file, which can send control signals to CopterSim,
and CopterSim will forward the "HIL_ACTUATOR_CONTROLS" MAVLink message to Pixhawk,
and then Pixhawk will publish it to 'rfly_ctrl' in the pool, used by the px4_simulink_app
generated by the code in the above figure. As shown in the figure below, this slx demo
simulates the RC data of CH1~Ch5 and sends it to the rfly_ctrl message.

60

• The experimental effect of this demo is consistent with
the operation process of the analog RC signal control
PX4 official controller in Section 3.1

• The experimental phenomenon is the same as the
effect of sending the RC signal to the Simulink code
generation controller in Section 4.2, because the two
examples both send the RC signal, but the
communication path is different.

• Note: In the case of real flight, just use MAVLink to
send HIL_ACTUATOR_CONTROLS message to the flight
controller, this module can send data to the control

61

Thanks

	Multicopter Design and Control Practice Experiments� �RflySim Advanced Courses� Lesson 03: External Control Interface
	Content
	1. Configuration of software & hardware
	1. Configuration of software & hardware
	1. Configuration of software & hardware
	1. Configuration of software & hardware
	1. Configuration of software & hardware
	1. Configuration of software & hardware
	1. Configuration of software & hardware
	1. Configuration of software & hardware
	1. Configuration of software & hardware
	content
	2. MAVLink communication analysis
	2. MAVLink communication analysis
	2. MAVLink communication analysis
	2. MAVLink communication analysis
	2. MAVLink communication analysis
	2. MAVLink communication analysis
	2. MAVLink communication analysis
	2. MAVLink communication analysis
	2. MAVLink communication analysis
	2. MAVLink communication analysis
	2. MAVLink communication analysis
	2. MAVLink communication analysis
	2. MAVLink communication analysis
	2. MAVLink communication analysis
	2. MAVLink communication analysis
	2. MAVLink communication analysis
	2. MAVLink communication analysis
	2. MAVLink communication analysis
	2. MAVLink communication analysis
	2. MAVLink communication analysis
	2. MAVLink communication analysis
	2. MAVLink communication analysis
	2. MAVLink communication analysis
	Content
	3. PX4 official controller communication
	3. PX4 official controller communication
	3. PX4 official controller communication
	3. PX4 official controller communication
	3. PX4 official controller communication
	3. PX4 official controller communication
	3. PX4 official controller communication
	3. PX4 official controller communication
	3. PX4 official controller communication
	3. PX4 official controller communication
	3. PX4 official controller communication
	3. PX4 official controller communication
	3. PX4 official controller communication
	3. PX4 official controller communication
	3. PX4 official controller communication
	3. PX4 official controller communication
	3. PX4 official controller communication
	Content
	4. Code generation controller communication
	4. Code generation controller communication
	4. Code generation controller communication
	4. Code generation controller communication
	4. Code generation controller communication
	4. Code generation controller communication
	幻灯片编号 61

