
Multicopter Design and Control 
Practice Experiments

RflySim Advanced Courses
Lesson 02: Flight Control Experiments

Dr. Xunhua Dai, Associate Professor,
School of Computer Science and Engineering, 

Central South University, China; 
Email: dai.xh@csu.edu.cn ;

https://faculty.csu.edu.cn/daixunhua

mailto:dai.xh@csu.edu.cn
https://faculty.csu.edu.cn/daixunhua


Content

1. Course Learning

2. Platform Framework

3. Advanced Examples

4. Summary

2

Path of demo and source code of this lesson: 
“RflySimAPIs\FlightControlExpCourse”



1. Course Learning

1.1 Reference Books
• Quan Quan, Xunhua Dai, Shuai Wang. Multicopter Design and Control Practice. 

Springer, 2020. URL: https: //www.springer.com/gp/book/9789811531378

3

Note: 
• The book Multicopter Design and Control 

Practice on the left is a practical course 
for flight control algorithm development 
launched in 2020. It contains some 
theoretical knowledge and a series of 
experiments, help readers quickly 
program their own algorithms in Simulink , 
and then auto generate C/C++ to 
Pixhawk hardware for flight experiment.

• The book Introduction to Multicopter 
Design and Control on the right is a 
tutorial launched in 2017, mainly for 
multicopter control theory.

https://www.springer.com/gp/book/9789811531378


1. Course Learning

1.2 Website: https: //rflysim.com/
• include material of top four sections 

of the book about the platform
• provide download address for PPTs 

and source code
• provide some project demos 

developed with RflySim platform
• Provide basic introduction and 

instructions of uses of advanced 
functions

• Provide answers to common 
questions

4

https://rflysim.com/


1. Course Learning

1.3  Online latest PPTs/source code download address
• https: //rflysim.com/en/5_Course/CourseContent.html
• https: //github.com/RflySim/RflyExpCode

5

https://github.com/RflySim/RflyExpCode
https://github.com/RflySim/RflyExpCode


1. Course Learning

1.4 Local PPTs/source code address
• Directly entering“RflySimAPIs\FlightControlExpCourse”folder
• “PPT_EN” contains all English PPT files 
• “code” contains source code correspond to the lesson
• Please connect with Website/PPTs/source code to learn courses related 

to flight control algorithm

6



1.5  Installation Configuration
• Re-run the“OnekeyScript.p”script in 

installation package
• If you use the recommended Pixhawk1(see 

below picture), the compile command 
‘px4_fmu-v3_default’ from textbook 

• Please enter “yes” for the option (10) on 
the right figure to block the PX4 output

• All the rest configuration shows on the right

7

1. Course Learning



• Pixhawk 1: px4_fmu-v2_default
• Pixhawk 1 (2M flash): px4_fmu-v3_default
• Pixhawk 4: make px4_fmu-v5_default
• Pixracer: make px4_fmu-v4_default
• Pixhawk 3 Pro: make px4_fmu-v4pro_default
• Pixhawk Mini: make px4_fmu-v3_default
• Pixhawk 2: make px4_fmu-v3_default
• mRo Pixhawk: make px4_fmu-v3_
• HKPilot32: make px4_fmu-v2_default
• Pixfalcon: make px4_fmu-v2_default
• Dropix: make px4_fmu-v2_default
• MindPX/MindRacer: make airmind_mindpx-

v2_default
• mRo X-2.1: make auav_x21_default
• Crazyflie 2.0: make bitcraze_crazyflie_default
• Intel® Aero: make intel_aerofc-v1_default

1. Course Learning
Different Pixhawk hardware has different compile order, normal compile order (PX4 1.9 
and later firmware) shows as follow

8



px4fmu-v3_default

       

Method to find out the desired
compiling command for your
Pixhawk:
1) Open QGroundControl (QGC) and
enter the “Setting” (Gear icon) –
“Firmware” Page;
2) Connect Pixhawk with a USB cable,
and the QGC will turn to the state in
the right figure, then click “OK” to
update;
3) QGC will auto download the
desired .px4 firmware, so the
compiling command can be found in
the download link. For example,
px4fmu-v3_default is obtained for
Pixhawk 1 (2Mb Flash).

1. Course Learning



• If using latest Pichawk4 autopilot (shows as 
follow), the compile order is “px4_fmu-
v5_default” Recommend to 

• use the latest PX4 firmware version“4” —
PX4-1.10.2

• Enter “yes” for the (10) option to block PX4 
output

• All the rest configuration shows on the right

10

1. Course Learning



1. Course Learning

1.6 Use your own PX4 source code
• If you need to use your own PX4 firmware code, 

please compress your “Firmware” folder into a 
“Firmware.zip” file, rename it according to the 
version (for example, if your code is based on PX4 
1.10, name it "PX4Firmware1.10.2.zip") and copy it to 
the "2.FirmwareZip" folder of the installation package 
to override, select "4" in the firmware version in the 
installation option on the right.

• It is recommended to use Win10WSL compiler, so 
choose "1" for the compiler.

• Whether to block PX4 output option (10), select “yes", 
the script will automatically complete all required 
firmware modifications to adapt to this platform

12



1.7 RC Transmitter configuration and calibration
1. Connect the Pixhawk with the RC receiver correctly, 

and then connect the Pixhawk and the computer via
a USB cable, power on the RC Transmitter, open the 
QGroundControl, and click the “Radio” tab.

2. Turn the CH1 to CH5 channels of the RC Transmitter 
from left to right (or from top to bottom) (see the upper 
right picture), and observe the small points of each 
channel in the red box area on the right side of the 
QGC in the lower right picture. If you observe: the 
small point 1, 2, 4, 5, and 6 move from left to right 
(PWM from 1100 to 1900); the small point 3 moves from 
right to left, indicating that the RC Transmitter is set 
correctly. Otherwise, you need to reconfigure the RC 
Transmitter.

3. Click the "Calibrate" button in the lower right picture 
and follow the prompts to calibrate the RC Transmitter.

1. Course Learning

13

CH1

CH2
CH3

CH4

Note: the arrows point to the increasing direction of PWM

Mode

Return
OK

P
O
W
E
R

Selection 
Wheel

Pixhawk

Link mode 
switch
button

USB 
wire

White-Red-Black JR 
wire

The arrow 
points to 

back

Black-Red-
White

CH5 CH6



1. Course Learning

14

“Mode 2”

Throttle 
Channel
(CH3)

Yaw 
Channel
(CH4)

Pitch 
Channel
(CH2)

Roll 
Channel
(CH1)

Throttle :  control up-down movement
  Pitch    :  control forward-backward
  Yaw     :  control vehicle head direction
  Roll      :  control left-right movement

Power 
Switch

Switch
(CH5)

Switch
(CH6)

4. Click ‘Calibrate’-‘Next’ in QGC 
ground station, then place stick as the 
right picture shows (follow the QGC 
real-time instructions)  to finish the 
calibration.



1.8  flight mode setting
• After the above RC transmitter calibration steps, 

click on the QGC ground station to enter the 
"Flight Modes" setting page, and select "Mode 
Channel" as the previously tested CH6 channel. 
Since the CH6 channel is a three-position 
switch, the top, middle, and lower positions of 
the switch correspond to the three labels "Flight 
Mode 1, 4, and 6" respectively.

• As shown in the figure on the right, set these 
three labels to "Stabilized" (self-stabilization 
mode, only attitude control), "Altitude" (fixed 
height mode, with attitude and height control) 
and "Position" (fixed-point mode, with attitude, 
fixed height and horizontal position control). In 
the subsequent HIL simulation, you can 
experience different control effects by 
switching different modes.

1. Course Learning

15



1. Course Learning

1.9 Switch development mode configuration
• If you want to switch from vision/swarm mode 

to low-level flight control development mode, 
you only need to re-run the ‘OnekeyScript.p’
script, choose required compiling command for 
Pixhawk hardware, and block the PX4 outputs.

• For saving installation time, some installed 
components already installed can be skip, 
choose ‘no’ is ok. (shown on the right)

• If you only need to change firmware compile 
command in flight control development mode, 
for example, from ‘px4_fmu-v3_default’ to 
‘px4_fmu-v5_default’, you only need to enter 
‘PX4CMD px4_fmu-v5_default’ in MATLAB 
command window, no need to rerun the 
installation script.

16



Content

1. Course Learning

2. Platform Framework

3. Advanced Examples

4. Summary

17



2. Platform Framework

2.1 Pixhawk/PX4/Simulink code generate platform structure 
• Pixhawk is the hardware (equivalent to a mainframe computer), PX4 is the flight control 

software (equivalent to the Windows OS), the Simulink controller generate the code and 
compile it into firmware (equivalent to the system iso image), and uploads it to the 
Pixhawk hardware (equivalent to reinstalling the system) , Simulink controller runs in 
parallel with a new thread (equivalent to a third-party APP on the computer) 
independent of the official PX4 controller (equivalent to system pre-installed software)

18
Simulink generated 
px4_simulink_app

Kalman 
Filter

Attitude 
Controller

Position 
Controller

Motor 
Control

uORB Message 
Pool

...

Hardware 
Interfaces

PX4 Software 

Upload 
Firmware

Pixhawk Hardware

Simulink Control 
Algorithm

LED, PWM, etc.

Code  Generation
PSP  Toolbox



2. Platform Framework

2.2 Why block PX4 output
• PX4 adopts uORB publish and subscribe message mechanism, any APP can obtain and publish data 

from uORB message pool
• Simulink code is generated to Pixhawk to generate an APP named px4_simulink_app, which can 

communicate with other APPs in PX4 through the uORB message pool
• px4_simulink_App cannot access the motor at the same time as the PX4 controller, otherwise there 

will be conflicts, so the PX4 official output needs to be blocked

px4_Simulink_app
Message Bus

——————————
uORB

19



2. Platform Framework

2.3 How to replace PX4 official filter, mixer and other APPs with Simulink 
controller
• The generated Simulink code can also be used to replace some native modules (sensors, 

filters, attitude controllers, etc.) of the PX4 control software as shown on the right, but the 
PX4 firmware code needs to be manually modified to block the output interface of the 
original module. For example, if you want to use Simulink to implement a filter module (input 
sensor data, output state filter data) to replace the original PX4 filter, you need to manually 
block the “Position & Attitude Estimator” filter module in the picture, and then publish the 
filtered attitude data (corresponding to the uORB message named vehicle_attitude) to the 
uORB message pool. The specific procedure is as follows: 

• Open the "Firmware\src\modules\ekf2\ekf2_main.cpp" file (or ekf2.cpp file in PX4-1.11, 
corresponding code for the extended Kalman filter module);

• Block out the sending code related to the "ORB_ID(vehicle_attitude)" message. For 
example, search for the code line with the keyword "_att_pub" and find the sending code 
line with "publish" and "att" in it, and replace it with "UNUSED(att);". Here UNUSED is used to 
prevent the compiler from warning about unused variables.

• Write the attitude filter in Simulink, and use the uORB Write module to send the 
vehicle_attitude message to replace the attitude filter function.

20

Note: Another feasible method is to modify the PX4 
module startup script file "Firmware\ROMFS\px4fmu_ 
common\init.d\rcS" and comment out the module 
you want to block



2. Platform Framework

2.4 Simulink automatic code generation configuration

21

Open any .slx demo file
1. Entering Simulink setting page 
(R2019b and above  should go 
to MODELING tab)
2. After select “Hardware board” 
setting to “Pixhawk PX4”, it will 
automatically finish all code 
generation configuration
3. Allows customize “task priority”
4. Setting compile options

(a) Simulink “Settings” button on MATLAB 2017b~2019a 

(b) Simulink “Settings” button on MATLAB 2019b and above 

Settings

Settings



2. Platform Framework

2.4 Simulink automatic code generation setting

22

The configuration of code 
generation is mainly on the 
Code Generation page
1. “System Target File” 
corresponds to the operating 
platform of the generated 
code, which is the code 
template
2. “Language” corresponding 
to the generated language, 
C or C++ can be selected
3. There are some compiler 
setting options



2. Platform Framework

2.4 Simulink automatic code generation setting

23

• ert.tlc is the most 
commonly used method 
of code generation

• The main program is finally 
a step() function

• You need to use interrupts 
or timers in the 
embedded system by 
yourself to call according 
to the set step

• For example: the 
simulation step is 0.001s, 
the embedded interrupt is 
the same



2. Platform Framework

2.4 Simulink automatic code generation setting

24

Input Uk Status Xk

step() function
Status Xk+1 Output Yk+1

k = k + 1

Parameter Θ

Input interface Output interface
Parameter interface

Schematic diagram of embedded system operation generated by ert.tlc. The step() 
function can choose approximate integration methods such as Runge-Kutta method 
and Euler method; the parameter interface allows real-time change of model 
parameters; the input and output interface allows other programs to call.



2. Platform Framework

2.4 Simulink automatic code generation setting

25

Difference between 
C/C++
• C generated code 

easier, but weaker 
scalability

• C++ can 
encapsulate the 
entire program as a 
class

• Facilitate later 
inheritance and 
expansion



2. Platform Framework

2.4 Simulink automatic code generation setting

26

• Interface
corresponds to C

• Allows to set some 
simulate methods. 
For example, 
whether it support 
plural, whether it 
support 
“continuous time”.

• Also allows to 
define output 
interface



2. Platform Framework

2.4 Simulink automatic code generation setting

27

• Interface 
correspond to C++

• You can also set 
whether the 
“Parameter visibility” 
is “Public”

• Whether to support 
multi-instance

• And whether to 
generate various 
external interfaces



2. Platform Framework

2.4 Simulink automatic code generation setting

28

• Select target 
compilation 
toolchain

• Choose 
“Pixhawk
Toolchain” here

• also allows 
choosing Visual 
Studio C++ or 
other compiler



2. Platform Framework

2.4 Simulink automatic code generation setting

29

• Choose build 
configuration

• Faster Builds get a 
smaller amount of 
code, which 
makes 
compilation faster

• Faster Runs will 
optimize the code 
and compile to 
ensure faster 
running efficiency



Content

1. Course Learning

2. Platform Framework

3. Advanced Examples

4. Summary

30



3. Advanced Examples

3.0 Install Visual Studio 2017 (other versions can also be used, 
only if MATLAB can recognize it)
• The Visual Studio (VS) compiler is needed in many places in subsequent courses, such as MATLAB
• The use of S-Function Builder module, Simulink automatically generates C/C++ model code, etc.
• It is recommended to install Visual Studio 2017. The online installation steps (internet required) are as follows: 
• Double-click "RflySimAPIs\SimulinkControlAPI\VS2017Installer\vs_community2017.exe"

31

• This course content only needs to check 
the “Desktop development with C++" on 
the right.

• Note: If you want to use Unreal Engine 4 
(UE4)’s C++ plugin development in the 
future, you can also check the latest 
Window 10 SDK in the “Installation details" 
on the right; then click the “Individual 
components" tab and check .NET 4.7.2 (or 
the latest version) and the corresponding 
pack package. Click install again.

Note: Visual Studio compiler is 
needed in many examples in this 
section, please install in advance



3. Advanced Examples

3.0 Configure C++ Compiler for 
MATLAB
• Enter the command "mex -

setup" in the MATLAB command 
line window

• Generally speaking, the VS 2017 
compiler will be automatically 
recognized and installed. As 
shown in the right figure, "MEX 
configured to use ‘Microsoft 
Visual C++ 2017’ for", indicating 
that the installation is correct

• This page can also switch to 
other compilers such as Visual 
Studio 2015

32



3. Advanced Examples

3.1 Self-generated C/C++ code examples

33

• Create a Simulink model 
according to the right picture 
(save it to name 
CodeGenExample.slx)

• Name the input as “Uin” 
• Name the output as “Yout”
• The initial value of the integral 

is defined as “X0”
• The names of the above 

variables need to be 
remembered, they correspond 
to the variable names of the 
generated C++ code

Note: This example requires the VS compiler, please follow the 
steps in Section 1.8 of "RflySim_Lesson_01_Introduction.pdf" to 
install and configure

Parameter initial value x0=0



3. Advanced Examples

3.1 Self-generated C/C++ 
code examples

34

• Double-click the Uin icon to enter 
the parameter setting page

• Enter the “Signal Attributes” page
• Set the data type "Data Type" to 

"double"
• Set the data dimension "Port 

dimensions" to "1"
• In this way, we define the data 

format of the input interface after 
the code is generated.

• Similarly, set the "Uout" output 
interface



3. Advanced Examples

3.1 Self-generated C/C++ code examples

35

• Double-click the 
integrator module to 
enter the “Block 
Parameter” page.

• Set a named parameter 
“X0”

• This will be a demo to 
show how the Simulink 
variable is shown in the 
generated C/C++ code

• Then, we can access this 
variable in our project



3. Advanced Examples

3.1 Self-generated C/C++ code examples

36

• Open the Simulink menu bar – “File –
Model Property – Model Property” page 
for MATLAB 2017b~2019a, and 
“MODELING – Model Settings – Model 
Properties” for MATLAB 2019b and 
above. 

• Add the initialization script "X0=0" in the 
“Callbacks - InitFcn” tab

• Click the Simulink “Run” button to see if 
it can run correctly.

MATLAB R2017b~2019a

MATLAB R2019a and above



3. Advanced Examples

3.1 Self-generated C/C++ code examples
• Open the settings page, set the simulation to “fixed-step” size, “ode4 (Runge-Kutta)” 

method solver, step size is “0.001”s (or other value based on the actual situation)

37

(a) Simulink “Settings” button on MATLAB 2017b~2019a 

(b) Simulink “Settings” button on MATLAB 2019b and above 

Settings

Settings



3. Advanced Examples

3.1 Self-generated C/C++ code examples
• Choose “ert.tlc” as the code generation method, which can be used for 

Windows, Linux and various embedded platforms; choose “C++” as the 
language, which is convenient to call the generated code through inheritance; 
choose “Visual Studio C++ **” as the Toolchain

38



3. Advanced Examples

3.1 Self-generated C/C++ code examples

39

• Because it contains a 
continuous module 
(integration module), 
you need to check 
“continuous time”, 
otherwise the 
compilation will report 
an error.

• In addition, the 
“parameter visibility” is 
set to “public”, and the 
parameter structure is a 
public variable for easy 
access in a class



3. Advanced Examples

3.1 Self-generated C/C++ code examples

40

Set the “File 
packaging 
format” to 
“compact” on 
the “Code 
packaging” 
page, and try to 
avoid 
generating 
redundant files 
to make the 
code the most 
readable



3. Advanced Examples

3.1 Self-generated C/C++ code examples
• Setting the parameter to “Tunable” allows us to modify the parameter at runtime. 

Note: The inline form saves more memory, but it is inconvenient to access 
parameters, and it is not convenient to implement real-time parameter 
modification or model fault injection.

41

Parameter behavior 
option on MATLAB 
R2017b~2019a Parameter behavior option on 

MATLAB R2019b and above



3. Advanced Examples

3.1 Self-generated C/C++ code examples

42

• Click the “Build” (compile) 
button to generate code

• Generate three files: 
• The file “ert_main.cpp” contains 

an example of calling the 
generated code

• The two files ****.cpp and ****.h
contain a C++ class generated 
by the Simulink project just now

• Note: for MATLAB R2019b and 
above versions, you should click 
“APPS - CODE GENERATION -
Simulink Coder” to observe the 
“HARDWARE” tab

Build

(a) Simulink “Build” button on MATLAB 2017b~2019a 

(b) Simulink “Build” button on MATLAB 2019b and above 
Build



3. Advanced Examples

3.1 Self-generated C/C++ code examples

43

• The picture on the right shows the 
generated C++ class (in the ****.h file): 
****ModelClass

• ****_P is the parameter structure
• ****_U is the input structure
• ****_Y is the output structure
• step() is a single step update function
• initializie() is the initialization function
• terminate() is the termination function



3. Advanced Examples

3.1 Self-generated C/C++ code examples

44

• Running framework of ert_main.cpp file
• The file needs to be written by the user
• Before the program runs, create a new instance of TestModelClass and 

initialize it
• For example: TestModelClass m_testClass; m_testClass.initializie();
• Generate an interrupt or timer, and call the callback function every 0.001s, in 

which the following operations are performed: 1. Update input information; 2. 
Update parameter information; 3. Call the step() function; 4. Update the 
output information.

• m_testClass. Test_U. Uin=***; 
• m_testClass. Test_P.X0=***;
• m_testClass.step();
• ***= m_testClass. Test_Y.Yout;
• When quit call m_testClass. Terminate()；

Parameter: initial value X0=0



3. Advanced Examples

3.2 Pixhawk code generation toolbox result analysis

45

Summary of the changes to the original firmware of the 
PX4 code of this platform: 
1. For PX4-1.8 and less, add ‘modules/px4_simulink_app’ in 
‘Firmware\cmake\configs\****.cmake’ file; for PX4-1.9 and 
above, add “px4_simulink_app” in the “MODULES” region of 
“Firmware\boards\px4\fmu-v*\default.cmake”
2. Setup ‘px4_simulink_app’ folder and empty_file.c + 
CMakeLists.txt under ‘Firmware\src\modules’
3. Add startup commands : ‘px4_simulink_app start’ in 
‘Firmware\ROMFS\px4fmu_common\init.d\rcS’

Note: After configuration in this page, input
make ***** command will call cmake to
compile the code generated by Simulink to a
px4_Simulink_app, and set it to start on boot.



3. Advanced Examples

3.2 Pixhawk code generation toolbox result analysis

46

• Open any generated ert_rtw folder 
after .slx demo file compiled (e.g. LED 
demo), the main files generated includes: 

• CMakeLists.txt
• ert_main.c
• ***.h
• ***.c
• ***.mk This file is used to copy the code to 

a suitable location (px4_simulink_app 
folder) after MATLAB completes the code 
generation, and call the PX4 compilation 
command (e.g., “make px4_fmu-
v3_default”) to compile the firmware



3. Advanced Examples

3.2 Pixhawk code generation toolbox result analysis

47

• PX4 firmware compilation principle (take PX4 1.7 
firmware fmu-v2 as an example): 

1. Open the compiler Win10WSL/Cygwin/Msys2
2. Enter “make px4_fmu-v3_default”

This command will call cmake to open the 
“Firmware\boards\px4\fmu-v3\default.cmake” 
file (PX4 1.8 and above versions will call 
“cmake\configs\nuttx_px4fmu-
v3_default.cmake”)

3. Compile code in the px4_simulink_app folder



3. Advanced Examples

3.2 Pixhawk code generation toolbox result analysis

48

• PX4 firmware compilation principle: 
• 4. Find the CmakeLists.txt file in the 

px4_simulink_app folder
• This file defines the way to compile the app thread
• The first is the path containing the source file
• The second is the main dependency of the app 

and thread priority



3. Advanced Examples

3.3 Pixhawk code generation toolbox module program

49

• These modules are composed 
of S functions plus tlc (Target 
Language Compiler) files

• Among them, the tlc file is a 
code generation template, 
which defines how the 
module generates code to 
access the driver interface of 
PX4 to exchange information 
with the underlying hardware

• The format of the tlc file can 
refer to MATLAB related 
tutorials

https: //www.mathworks.com/help/pdf_doc/rtw/index.html

https://www.mathworks.com/help/pdf_doc/rtw/index.html


3. Advanced Examples

3.3 Pixhawk code generation toolbox 
module program
• Get the S-function (tlc) position from the Simulink 

module properties

50

Interface to use C++ 
subscribe GPS’s 
uORB message

Documents



51

Thanks


	Multicopter Design and Control Practice Experiments� �RflySim Advanced Courses�  Lesson 02: Flight Control Experiments
	Content
	1. Course Learning
	1. Course Learning
	1. Course Learning
	1. Course Learning
	1. Course Learning
	1. Course Learning
	1. Course Learning
	1. Course Learning
	1. Course Learning
	1. Course Learning
	1. Course Learning
	1. Course Learning
	1. Course Learning
	Content
	2. Platform Framework
	2. Platform Framework
	2. Platform Framework
	2. Platform Framework
	2. Platform Framework
	2. Platform Framework
	2. Platform Framework
	2. Platform Framework
	2. Platform Framework
	2. Platform Framework
	2. Platform Framework
	2. Platform Framework
	Content
	3. Advanced Examples
	3. Advanced Examples
	3. Advanced Examples
	3. Advanced Examples
	3. Advanced Examples
	3. Advanced Examples
	3. Advanced Examples
	3. Advanced Examples
	3. Advanced Examples
	3. Advanced Examples
	3. Advanced Examples
	3. Advanced Examples
	3. Advanced Examples
	3. Advanced Examples
	3. Advanced Examples
	3. Advanced Examples
	3. Advanced Examples
	3. Advanced Examples
	3. Advanced Examples
	3. Advanced Examples
	幻灯片编号 51

